Numerical method - PowerPoint PPT Presentation


Language Teaching Techniques: GTM, Direct Method & Audio-Lingual Method

Explore the Grammar-Translation Method, Direct Method, and Audio-Lingual Method in language teaching. Understand principles, objectives, and methodologies with insights into language learning approaches. Enhance teaching skills and foster effective communication in language education.

3 views • 82 slides


Understanding and Applying Numerical Analysis in Statistics

Utilize numerical analysis techniques to interpret and manipulate numerical data effectively in various environments. Enhance your understanding of value placement in digital contexts to make informed decisions based on positioning and order. Develop skills in reading, writing, and interpreting numb

7 views • 36 slides



Understanding Data Types and Summary Statistics in Exploratory Data Analysis

Data types, including discrete numerical, continuous numerical, ordinal, and nominal, are essential in exploratory data analysis. Variables can be categorized based on their nature, such as numerical variables (interval vs. ratio) and categorical data summaries. Learn about USGS flow measurements, n

4 views • 48 slides


Ensuring Reliability of Deep Neural Network Architectures

This study focuses on assuring the reliability of deep neural network architectures against numerical defects, highlighting the importance of addressing issues that lead to unreliable outputs such as NaN or inf. The research emphasizes the widespread and disastrous consequences of numerical defects

0 views • 26 slides


Understanding Numerical Expressions in Mathematics

Explore the concept of numerical expressions in math, focusing on recognizing, writing, and interpreting expressions involving addition, subtraction, multiplication, and division. Learn key vocabulary and solve sample problems to enhance comprehension.

1 views • 36 slides


Understanding Different Emasculation Techniques in Plant Breeding

Learn about the significance of emasculation in plant breeding to prevent self-pollination and facilitate controlled pollination. Explore various methods such as hand emasculation, forced open method, clipping method, emasculation with hot/cold water, alcohol, suction method, chemical emasculation,

2 views • 10 slides


Numerical Problems on Floatation and Metacentric Heights in Marine Engineering

Solve numerical problems related to floatation and metacentric heights in marine engineering, including calculations for metacentric height, centre of gravity, displacement, and angles of tilt. Examples involve ships, pontoons, and calculating dimensions such as breadth and height for floating struc

1 views • 5 slides


Understanding Newton's Method for Solving Equations

Newton's Method, also known as the Newton-Raphson method, is a powerful tool for approximating roots of equations. By iteratively improving initial guesses using tangent lines, this method converges towards accurate solutions. This method plays a crucial role in modern calculators and computers for

0 views • 12 slides


Understanding the Conjugate Beam Method in Structural Analysis

The Conjugate Beam Method is a powerful technique in structural engineering, derived from moment-area theorems and statical procedures. By applying an equivalent load magnitude to the beam, the method allows for the analysis of deflections and rotations in a more straightforward manner. This article

1 views • 11 slides


Understanding Roots of Equations in Engineering: Methods and Techniques

Roots of equations are values of x where f(x) = 0. This chapter explores various techniques to find roots, such as graphical methods, bisection method, false position method, fixed-point iteration, Newton-Raphson method, and secant method. Graphical techniques provide rough estimates, while numerica

0 views • 13 slides


Understanding Numerical Methods and Errors in Computation

Delve into the world of numerical methods through the guidance of Dr. M. Mohamed Surputheen. Explore topics such as solving algebraic and transcendental equations, simultaneous linear algebraic equations, interpolation, numerical integration, and solving ordinary differential equations. Learn about

0 views • 130 slides


Mathematical Modeling and Error Analysis in Engineering

Mathematical modeling plays a crucial role in solving engineering problems efficiently. Numerical methods are powerful tools essential for problem-solving and learning. This chapter explores the importance of studying numerical methods, the concept of mathematical modeling, and the evaluation proces

0 views • 10 slides


Understanding Categorical and Numerical Data in Mathematics

Explore the distinction between categorical and numerical data in math. Learn how mathematicians categorize and analyze data, sorting cards into different categories to understand similarities and differences. Develop perseverance skills by determining survey question types and defining data types w

0 views • 9 slides


Understanding Interpolation in Numerical Methods

Interpolation is a fundamental mathematical operation used in numerical methods to find the value of a function between known data points. It involves computing the value of a function at any point within a given interval based on existing data. Newton's forward interpolation formula is commonly use

0 views • 18 slides


Determination of Dipole Moment in Chemistry

The determination of dipole moment in chemistry involves methods such as the Temperature Method (Vapour Density Method) and Refractivity Method. These methods rely on measuring various parameters like dielectric constants and polarizations at different temperatures to calculate the dipole moment of

1 views • 15 slides


Comprehensive Overview of Numerical Linear Algebra Methods for Solving Linear Systems

Explore numerical linear algebra techniques for solving linear systems of equations, including direct and iterative methods. Delve into topics like Gaussian elimination, LU factorization, band solvers, sparse solvers, iterative techniques, and more. Gain insights into basic iterative methods, error

6 views • 12 slides


Introduction to Numerical Methods: A Comprehensive Overview

Numerical methods play a crucial role in solving mathematical problems efficiently through arithmetic operations. This lecture by Dr. Nur Uddin covers the fundamental concepts of numerical methods, emphasizing their importance in engineering problem-solving with the use of modern digital computers.

1 views • 17 slides


Introduction to Numpy and Scipy: Numerical Computing in Python

Numpy and Scipy provide powerful MATLAB-like functionality in Python for fast numerical computations, high-level math functions, and efficient handling of multidimensional arrays. Learn why NumPy is essential for speeding up numerical computations in Python and explore key features such as arrays, m

0 views • 47 slides


Understanding Mathematical Modeling and Error Analysis in Engineering

Mathematical modeling plays a crucial role in problem-solving in engineering by using numerical methods. This involves formulating problems for solutions through arithmetic operations. The study of numerical methods is essential as they are powerful problem-solving tools that enhance computer usage

5 views • 10 slides


Understanding Python ML Tools: NumPy and SciPy

Python is a powerful language for machine learning, but it can be slow for numerical computations. NumPy and SciPy are essential packages for working with matrices efficiently in Python. NumPy supports features crucial for machine learning, such as fast numerical computations and high-level math fun

0 views • 11 slides


Numerical Expressions and Exponents Overview

This content covers various numerical expressions involving exponents, including examples of valid and invalid mathematical representations, matching worded expressions with their numerical equivalents, and identifying the correct expressions based on provided criteria.

0 views • 30 slides


Understanding Numerical Integration in Density Functional Theory (DFT)

The application of numerical integration techniques in Density Functional Theory (DFT) is crucial for solving the Eigenvalue Problem and evaluating energy functionals. This involves partitioning integrals, approximating integrals at atomic centers, defining partition functions, and ensuring cell fun

0 views • 15 slides


Numerical Abstract Domain with Max Operator in Timing Analysis

Explore a numerical abstract domain based on expression abstraction and the Max operator with applications in timing analysis. The challenges in timing analysis, such as disjunctive and non-linear bounds, are discussed along with simple examples illustrating these concepts. The difficulty of proving

0 views • 21 slides


Overview of Sparse Linear Solvers and Gaussian Elimination

Exploring Sparse Linear Solvers and Gaussian Elimination methods in solving systems of linear equations, emphasizing strategies, numerical stability considerations, and the unique approach of Sparse Gaussian Elimination. Topics include iterative and direct methods, factorization, matrix-vector multi

0 views • 35 slides


Measurement of Flow Velocity on Frozen and Non-Frozen Slopes of Black Soil Using Leading Edge Method

This study presented a detailed methodology for measuring flow velocity on frozen and non-frozen slopes of black soil, focusing on the Leading Edge method. The significance of shallow water flow velocity in soil erosion processes was emphasized. Various methods for measuring flow velocity were compa

0 views • 23 slides


Introduction to Python for Numerical Computing and Scientific Application

This document introduces the use of Python for numerical computing and development of scientific applications in the context of Civil and Environmental Engineering. It covers topics such as utilizing the SciPy ecosystem, creating graphs using pylab/matplotlib, plotting 3D graphs, and working with Pa

0 views • 36 slides


Chemical Kinetics and Numerical Solvers in Chemistry

Explore the principles of chemical kinetics and the use of numerical solvers to compute concentrations over time, considering explicit and implicit methods. Understand stability and positivity requirements in solvers and the importance of characteristic time scales in chemical systems. Dive into a s

0 views • 5 slides


Exploring Randomized Numerical Linear Algebra (RandNLA)

Delve into the world of RandNLA, where randomization and sampling techniques are utilized to design accurate algorithms for handling massive matrices and computationally complex problems. Learn about sampling rows/columns, matrix perturbation theory, and its applications in Big Data, theoretical com

0 views • 83 slides


Best Practices for Including Code and Numerical Results in Statistics-related Dissertations

Include important code snippets in an appendix, describe work in detail in the main body, mention coding in introduction, present numerical results appropriately, format figures optimally for statistics-related dissertations.

0 views • 5 slides


Understanding Numerical Chromosome Aberrations in Humans

Numerical chromosome aberrations involve the gain or loss of whole chromosomes, impacting the genome size and potentially leading to genetic mutations. Nondisjunction, where chromosomes fail to separate properly during cell division, can result in aneuploidy - the presence of an extra or missing chr

0 views • 18 slides


Understanding Numerical Methods for Root Finding and Iteration

Explore the concepts of root finding, locating roots, stationary points, and iteration in numerical methods. Learn to determine roots, stationary points, and convergence/divergence types, as well as apply the Newton-Raphson method for function approximation.

0 views • 17 slides


Understanding Numerical Methods in Mathematics

Explore the world of numerical methods in mathematics, focusing on the Newton-Raphson Method and root approximations. Discover how to locate roots of equations and use iteration to enhance your problem-solving skills. Uncover the significance of numerical methods in finding solutions to complex equa

0 views • 28 slides


An Overview of Finite Element Method in Mechanical Engineering

Finite Element Method (FEM) in mechanical engineering is a powerful numerical technique involving dividing a domain into finite elements, establishing relations between variables, and assembling elements to analyze a system. This method is fundamental for solving one-dimensional problems and approxi

0 views • 63 slides


Understanding the Shoe Lace Method for Finding Polygon Areas

The Shoe Lace Method is a mathematical process used to determine the area of any polygon by employing coordinate geometry. By following specific steps, including organizing coordinates, multiplying diagonally, and adding columns in a certain manner, the method allows for a straightforward calculatio

0 views • 8 slides


Unsteady MHD Poiseuille Flow Through a Porous Channel

This study investigates unsteady magnetohydrodynamic (MHD) Poiseuille flow through a porous channel under an oscillating pressure gradient and uniform suction/injection. The objective is to obtain numerical solutions for the velocity distribution and analyze how the velocity is affected by various p

0 views • 16 slides


Overview of Numerical Methods in Computational Fluid Dynamics

This material delves into the properties, discretization methods, application in PDEs, grid considerations, linear equations solution, and more involved in Numerical Methods in Computational Fluid Dynamics. It covers approaches to fluid dynamical problems, components of numerical methods, and their

0 views • 40 slides


Numerical Study of Submerged Oil Leak Jet

This study focuses on a numerical investigation of a submerged turbulent oil jet, aiming to calculate the oil discharge rate despite the opaque nature of the oil. The research involves experimental test cases, CFD simulations, and analysis of large and small-scale structures in the oil-water interfa

0 views • 24 slides


Numerical Analysis of Aerodynamic Performances in Biplane Configuration

This paper presents a numerical investigation comparing single versus double wing (biplane) configurations for aerodynamic performances. Geometric models and numerical analyses were conducted, providing insights into the advantages and complexities of biplane wings. The study utilized computational

0 views • 12 slides


Understanding Quantitative Data Analysis in Research

Dive into the world of quantitative data analysis with a focus on frequencies, central tendency, dispersion, and standard deviation. Explore the collection and analysis of numerical data, levels of measurement, and methods for quantifying social concepts. Learn about the importance of capturing data

0 views • 25 slides


Math Expressions Exploration for Elementary Students

This content discusses numerical and algebraic expressions, teaching students how to match written expressions to numerical expressions, understand the concept of variables, and differentiate between algebraic and numerical expressions. It also covers basic operations like addition, subtraction, mul

0 views • 11 slides