Toolpaths and Slicing in 3D Printing

 
TOOLPATHS
 
3D Printing with Plastic Filament
+X
-X
+Z
+E
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Slicing
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Uniform slicing
 
Fixed thickness (typically from 0,1 to 0,3 mm)
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Slice plane
 
[Cute Octopus Says Hello (
MakerBot
) / 
CC BY 3.0
]
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Upon printing
 
extruder
 
Slice slab
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Volume error
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Minimizing volume error
 
Optimization
Minimize volume error?
 
Variables:
Object orientation!
Slice thicknesses
 
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Adaptive slicing
 
Same number of slices
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Adaptive slicing
 
[Cute Octopus Says Hello (
MakerBot
) / 
CC BY 3.0
]
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Adaptive slicing
 
[Cute Octopus Says Hello (
MakerBot
) / 
CC BY 3.0
]
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Adaptive slicing
 
Faster for same precision
Do not waste time in ‘simple’ regions
 
Not so easy to determine best strategy
See survey by 
[P.M. Pandey et. al. 2003]
Recent work: 
[
Wang et. al. 2015
] 
“Saliency preserving slicing”
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Locally adaptive slicing
 
Slic3r : micro-layering
IceSL  : nested slices
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
Toolpaths
 
[Cute Octopus Says Hello (
MakerBot
) / 
CC BY 3.0
]
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Perimeter
 
Shells
 
Infill
 
Cover
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Erosion (morphological)
 
Structuring element
(nozzle exit hole)
 
Slice
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Erosion (morphological)
 
Erosion: All points where
structuring element is
entirely
 included
 
Structuring element
(nozzle exit hole)
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Perimeter
 
Visible part of the filament
Object contouring
 
Erosion!
 
(top view)
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Plastic flow
 
How much plastic to push?
Millimeters of filament (E axis)
 
Nozzle diameter
 
Layer height
 
E axis
 
FA
 
Filament diameter
 
Layer height x Nozzle diameter x L
 
L
 
FA
 
Length to push =
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
‘Thin features’
 
Disappears!!!
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
‘Thin features’
 
????
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
A possible approach
 
Skeleton
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
A possible approach
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Arbitrary decision (user?)
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Shells
 
More of the same
 
Note the gaps
 
Might become thin
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Infills
 
Top / bottom covers
 
 
 
 
Inside
Full infill (very robust, slow, lots of plastic)
Sparse infill (save plastic and time, less strong)
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
100% Infill
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
100% Infill
 
???
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Flow control
 
Limited change of thickness
 
Might not adhere
 
100%
 
50%
 
25%
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
100% Infill
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Speed
 
Faster!
 
Both axis work together: better acceleration
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Sparse Infill
 
Simple approach
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Sparse Infill
 
Squish!
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Sparse Infill
 
An improved variant:
 
Could be slow to print
Resonance
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Sparse Infill
 
An improved variant:
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Many other variants
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
Improving sparse infill ?
 
Tradeoff between:
Strength vs Plastic consumption
Time and printability (favor straight, diagonal lines)
 
Recent works:
 
[Wang et al. 2013] 
“Cost effective printing”
 
[Lu et al. 2014] 
“Build to last”
 Slic3r 3D honeycomb
 
Generates a 3D cellular pattern
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
 
New 3D infills
 
Just released :-)
 
 
 
 
 
 
 
See 
http://sylefeb.blogspot.fr/
 
[3D infills, Sylvain Lefebvre, 
CC BY 4.0
]
 
CC BY-NC-ND – sylvain.lefebvre@inria.fr
Slide Note
Embed
Share

Explore toolpaths, slicing techniques, and optimization methods in 3D printing with plastic filament. Learn about uniform slicing, volume error minimization, adaptive slicing, and locally adaptive slicing for efficient and high-quality printing results. Discover how advanced strategies can enhance printing precision and speed.

  • Toolpaths
  • Slicing
  • 3D printing
  • Plastic filament
  • Optimization

Uploaded on Sep 27, 2024 | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. Download presentation by click this link. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

E N D

Presentation Transcript


  1. TOOLPATHS 3D Printing with Plastic Filament

  2. +E -X +X +Z CC BY-NC-ND sylvain.lefebvre@inria.fr

  3. Slicing CC BY-NC-ND sylvain.lefebvre@inria.fr

  4. Uniform slicing Fixed thickness (typically from 0,1 to 0,3 mm) Z (up) axis CC BY-NC-ND sylvain.lefebvre@inria.fr

  5. Slice plane [Cute Octopus Says Hello (MakerBot) / CC BY 3.0] CC BY-NC-ND sylvain.lefebvre@inria.fr

  6. Upon printing extruder Slice slab Z (up) axis CC BY-NC-ND sylvain.lefebvre@inria.fr

  7. Volume error Z (up) axis CC BY-NC-ND sylvain.lefebvre@inria.fr

  8. Minimizing volume error Optimization Minimize volume error? Variables: Object orientation! Slice thicknesses CC BY-NC-ND sylvain.lefebvre@inria.fr

  9. Adaptive slicing Same number of slices CC BY-NC-ND sylvain.lefebvre@inria.fr

  10. Adaptive slicing [Cute Octopus Says Hello (MakerBot) / CC BY 3.0] CC BY-NC-ND sylvain.lefebvre@inria.fr

  11. Adaptive slicing [Cute Octopus Says Hello (MakerBot) / CC BY 3.0] CC BY-NC-ND sylvain.lefebvre@inria.fr

  12. Adaptive slicing Faster for same precision Do not waste time in simple regions Not so easy to determine best strategy See survey by [P.M. Pandey et. al. 2003] Recent work: [Wang et. al. 2015] Saliency preserving slicing CC BY-NC-ND sylvain.lefebvre@inria.fr

  13. Locally adaptive slicing Slic3r : micro-layering IceSL : nested slices CC BY-NC-ND sylvain.lefebvre@inria.fr

  14. Toolpaths [Cute Octopus Says Hello (MakerBot) / CC BY 3.0] CC BY-NC-ND sylvain.lefebvre@inria.fr

  15. Shells Infill Perimeter Cover CC BY-NC-ND sylvain.lefebvre@inria.fr

  16. Erosion (morphological) Structuring element (nozzle exit hole) Slice CC BY-NC-ND sylvain.lefebvre@inria.fr

  17. Erosion (morphological) Structuring element (nozzle exit hole) Erosion: All points where structuring element is entirely included CC BY-NC-ND sylvain.lefebvre@inria.fr

  18. Perimeter Visible part of the filament Object contouring Erosion! (top view) CC BY-NC-ND sylvain.lefebvre@inria.fr

  19. Plastic flow How much plastic to push? Millimeters of filament (E axis) E axis FA Nozzle diameter L Layer height Filament diameter Layer height x Nozzle diameter x L Length to push = FA CC BY-NC-ND sylvain.lefebvre@inria.fr

  20. Thin features Disappears!!! CC BY-NC-ND sylvain.lefebvre@inria.fr

  21. Thin features ???? CC BY-NC-ND sylvain.lefebvre@inria.fr

  22. A possible approach Skeleton CC BY-NC-ND sylvain.lefebvre@inria.fr

  23. A possible approach CC BY-NC-ND sylvain.lefebvre@inria.fr

  24. Arbitrary decision (user?) CC BY-NC-ND sylvain.lefebvre@inria.fr

  25. Shells Note the gaps More of the same Might become thin CC BY-NC-ND sylvain.lefebvre@inria.fr

  26. Infills Top / bottom covers Inside Full infill (very robust, slow, lots of plastic) Sparse infill (save plastic and time, less strong) CC BY-NC-ND sylvain.lefebvre@inria.fr

  27. 100% Infill CC BY-NC-ND sylvain.lefebvre@inria.fr

  28. 100% Infill ??? CC BY-NC-ND sylvain.lefebvre@inria.fr

  29. Flow control Limited change of thickness Might not adhere 25% 100% 50% CC BY-NC-ND sylvain.lefebvre@inria.fr

  30. 100% Infill CC BY-NC-ND sylvain.lefebvre@inria.fr

  31. Speed Faster! Both axis work together: better acceleration CC BY-NC-ND sylvain.lefebvre@inria.fr

  32. Sparse Infill Simple approach CC BY-NC-ND sylvain.lefebvre@inria.fr

  33. Sparse Infill Squish! CC BY-NC-ND sylvain.lefebvre@inria.fr

  34. Sparse Infill An improved variant: Could be slow to print Resonance CC BY-NC-ND sylvain.lefebvre@inria.fr

  35. Sparse Infill An improved variant: CC BY-NC-ND sylvain.lefebvre@inria.fr

  36. Many other variants CC BY-NC-ND sylvain.lefebvre@inria.fr

  37. Improving sparse infill ? Tradeoff between: Strength vs Plastic consumption Time and printability (favor straight, diagonal lines) Recent works: [Wang et al. 2013] Cost effective printing [Lu et al. 2014] Build to last Slic3r 3D honeycomb Generates a 3D cellular pattern CC BY-NC-ND sylvain.lefebvre@inria.fr

  38. New 3D infills Just released :-) [3D infills, Sylvain Lefebvre, CC BY 4.0] See http://sylefeb.blogspot.fr/ CC BY-NC-ND sylvain.lefebvre@inria.fr

More Related Content

giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#