Enzyme precursors - PowerPoint PPT Presentation


Enzymes are Proteins that act as Biological Catalyst

Enzymes, as proteins acting as biological catalysts, accelerate chemical reactions without being consumed. They have active sites where substrates bind, and their specificity can be lock-and-key or induced fit. Enzymes are named based on their function or the substrates they interact with. Enzyme sp

5 views • 20 slides


Role of Phosphatase Enzymes in Metabolic Reactions

Phosphatase enzymes play a crucial role in various metabolic processes by releasing phosphate groups, increasing their availability for energy synthesis and cell structure formation. Acid phosphatases, with an optimum pH below 7.0, can be extracted from plant tissues like germinating mung beans. A p

7 views • 34 slides



Enzyme Function Through Induced Fit Model

The learning content discusses enzymes as biological catalysts that increase reaction rates by lowering activation energy. It explores how enzyme activity efficiency is influenced by factors such as temperature, pH, and substrate concentration. The Induced Fit Model is analyzed to explain how enzyme

5 views • 12 slides


Phylogenetic Analysis of Enzyme Sequences in Plant Species

The content discusses the amino acid sequence alignment and phylogenetic tree analysis of enzyme sequences, specifically DcLCYB2, among different plant species including Daucus carota, Carica papaya, Citrus maxima, Solanum lycopersicum, and Crocus sativus. The study explores the genetic relationship

3 views • 5 slides


Bioprocessing: Advantages, History, Applications, and Enzyme Use

Bioprocessing utilizes biological materials for commercial, medical, and scientific purposes, leveraging natural biological activities to develop useful products. This branch of biotechnology offers advantages such as low temperature, pressure, and pH requirements, along with renewable resources for

2 views • 11 slides


Investigating the Impact of Pineapple Enzyme Bromelain on Gelatin and Pasteurization Process

Explore the effects of pineapple enzyme bromelain on gelatin and how pasteurization can alter its effectiveness in this lab experiment. Discover the different outcomes when using fresh versus canned pineapple and formulate hypotheses to guide the investigation. Follow step-by-step procedures to test

0 views • 15 slides


Factors Affecting Enzyme Activity and Catalysis

Enzyme activity is influenced by various factors such as enzyme concentration, temperature, pH, substrate concentration, inhibitors, activators, and physical agents. The rate of enzyme-catalyzed reactions is directly proportional to enzyme concentration, and temperature plays a significant role with

0 views • 23 slides


Enzyme Function: The Key Steps and Importance of Cofactors

Enzymes play a crucial role in catalyzing biochemical reactions by forming enzyme-substrate complexes and facilitating changes in substrate molecules to product molecules. The process involves four steps: proximity of enzyme and substrate, binding at the active site, catalysis leading to substrate a

0 views • 39 slides


Peroxidase Enzyme Activity in Biological Samples

Demonstrating the enzyme activity of peroxidase, an enzyme that plays a crucial role in breaking down hydrogen peroxide in various organisms. Learn about the differences between peroxidase and catalase, the calculation of enzyme activity, and the significance of extinction coefficient in enzyme assa

0 views • 8 slides


GCSE Required Practical Biology Experiments Overview

Explore GCSE Required Practical Biology experiments including using a light microscope, investigating osmosis, conducting food tests, and studying amylase enzyme activity. Understand the objectives, apparatus, results, and potential questions that may be asked in each experiment. Gain insights into

0 views • 5 slides


Enzyme Kinetics for Understanding Chemical Reactions

Enzyme kinetics is a vital discipline focusing on the rate of enzyme-catalyzed reactions and how they respond to varying conditions. Reactions are classified based on reactant concentration influences. Zero, first, second, and third order reactions are distinguished, with examples like first-order r

0 views • 31 slides


Demonstration of Salivary Amylase Enzyme Action in B.Sc. Practical

Salivary amylase, an enzyme found in saliva, partially hydrolyzes starch into maltose. This practical involves observing the action of salivary amylase on starch, demonstrating how starch is broken down into glucose and maltose. The procedure includes preparing solutions, collecting saliva, mixing w

0 views • 5 slides


Enzyme Immobilization: Techniques and Applications in Industry and Healthcare

Enzyme immobilization involves confining enzymes on inert supports for stability and reuse, enhancing efficiency and cost-effectiveness. Historical events and examples illustrate various methods and applications. Chemical modifications, such as PEG addition, have shown increased enzyme activity. The

0 views • 34 slides


Factors Affecting Enzyme Activity and Kinetics Experiments

Explore the factors influencing enzyme activity, such as substrate and enzyme concentration, temperature, pH, and inhibitors. Learn how to simulate enzyme kinetics using equipment like popping beads and stopwatches. Analyze results to understand the impact of substrate concentration on reaction rate

0 views • 22 slides


Enzyme Activity and Optimal Conditions

This interactive content provides a detailed exploration of enzyme activity through data interpretation and graph analysis. Questions range from identifying the impact of enzymes on specific molecules to determining optimal conditions for various enzyme functions such as pH and temperature. Users de

0 views • 16 slides


Immobilization of Enzymes in Biochemistry

Enzyme immobilization involves confining enzyme molecules to a distinct phase from substrates and products, attaching them to solid matrices for enhanced specificity and reduced inhibition. Inert polymers or inorganic materials are used as carrier matrices with methods like physical adsorption onto

0 views • 24 slides


Zymogens and Ribozymes: An Overview of Inactive Enzyme Precursors

Zymogens, such as trypsinogen and pepsinogen, are inactive enzyme precursors that are activated through specific cleavage in various biological environments. Understanding the activation process of zymogens sheds light on how enzymes are regulated and function in the body.

0 views • 17 slides


Enzyme Inhibition in Biochemistry

Enzyme inhibition plays a crucial role in pharmacology and biochemistry by regulating enzymatic reactions. Inhibitors can be reversible or irreversible, affecting enzyme activity differently. Competitive, uncompetitive, and noncompetitive inhibition types are explained along with examples like diiso

0 views • 20 slides


Plant Enzyme Activities and Phylogenetic Analysis

The content discusses the alignment of various plant enzyme amino acid sequences, including DcLCYB1, DcLCYB2, and DcLCYE, among different inbred lines. It also explores the construction of DcLCYs for enzyme activities using an E. coli complementation assay. The phylogenetic relationship between DcLC

0 views • 5 slides


Demonstration of Salivary Enzyme Amylase Action in B.Sc. Practical

Salivary enzyme amylase, also known as ptyalin, plays a crucial role in breaking down starch and glycogen into maltose. This practical session in the Zoology department explores the action of salivary enzyme amylase at a temperature of 37°C and pH of 6.6. By conducting experiments with starch, iodi

0 views • 8 slides


Hydroclimatic Precursors and Rainfall Predictability in East and West Japan

Variability of rainfall in Japan is influenced by Pacific and Indian Ocean teleconnections. Understanding the hydroclimatic precursors in East and West Japan is crucial for seasonal rainfall prediction. This study compares different methodologies to extract teleconnection features and develop models

0 views • 15 slides


Biology Review: Genetics, Enzymes, and Cell Division

Explore key concepts in AP Biology, including genetic continuity and change, enzyme catalysis, mitosis, and meiosis. Understand the mechanisms of genetic variability and cell division processes. Dive into enzyme-substrate interactions and the differences between mitosis and meiosis.

0 views • 11 slides


Enzyme Assays in Biotechnology

Exploring enzyme assays in biotechnology, covering topics such as ELISA, protein assays, enzyme activity measurement techniques, specific activity, terminology related to enzyme assays, and different types of experiments conducted by biochemists to study enzyme-catalyzed reactions. The content delve

0 views • 53 slides


Cyanide's Impact on Respiration Through Enzyme Inhibition

Cyanide, a noncompetitive inhibitor of the enzyme cytochrome c oxidase, disrupts electron transport in respiration by binding to the iron cofactor and blocking electron transfer to oxygen. This lethal effect was utilized in gas chambers during WWII, underscoring the crucial role of enzyme function i

0 views • 7 slides


Multisubstrate Enzyme Kinetic Mechanisms

In multisubstrate enzyme kinetic mechanisms, the apparent Km and Vmax values change with varying substrate concentrations. Different kinetic mechanisms like rapid equilibrium Bi Bi and ordered Bi Bi reactions can occur. The ping-pong Bi Bi reaction involves oscillation between enzyme forms. Various

0 views • 11 slides


Factors Affecting Polyphenol Oxidase Activity in Enzyme Reaction

Polyphenol oxidase (PPO) is a copper-containing enzyme with an optimal pH of 6.7 that catalyzes the oxidation of phenols, leading to color changes like browning in fruits and potatoes. This experiment aims to demonstrate PPO activity, its chemical nature, substrate specificity, and the effects of te

0 views • 18 slides


Factors Affecting Enzyme Activity in Biochemistry

Enzyme assays measure substrate conversion to product under varying conditions like cofactors, pH, and temperature. Enzyme velocity represents the rate of a catalyzed reaction, typically reported as V0. Enzyme activity is expressed as mol of substrate transformed per minute, with enzyme unit and kat

0 views • 18 slides


Mutations in Coenzyme Binding Sites and Related Diseases

Mutations in coenzyme binding sites can lead to diseases by impacting enzyme affinity and reaction rates. Defects in proteins like ornithine aminotransferase and cystathionine-synthase result in conditions such as gyrate atrophy of the choroid and retina, homocystinuria, and X-linked sideroblastic a

0 views • 14 slides


Enzymatic Digestion of Fat by Pancreatic Lipase

The experiment focuses on studying the enzymatic digestion of fat by pancreatic lipase. It covers the structure of triglycerides, the role of lipase enzyme in hydrolyzing triglycerides to release fatty acids, and the general hydrolysis process. The aim is to investigate the effects of lipase enzyme

0 views • 9 slides


LacZ - Galactosidase Enzyme: Structure, Function, and Applications

LacZ - galactosidase enzyme, encoded by the lacZ gene in the lac operon, plays a crucial role in cleaving lactose, transgalactosylation, and regulating gene expression. Its application in labs using X-gal as a substrate allows for easy detection of active enzyme through color changes. This versatile

0 views • 13 slides


Genetic Engineering Techniques and Enzyme Palindromes

Explore the GGA method with pClone Red, EcoRI palindrome type II variations, and BsaI enzyme properties in genetic manipulation. Detailed images and descriptions provide insights into DNA cutting techniques and promoter sequences.

0 views • 22 slides


Protein Purification Protocol: Practical Training in Biochemistry Techniques

This protein purification protocol course, led by Dr. Samina Hyder Haq, focuses on practical training in various biochemistry techniques. The course covers organizing experimental protocols, protein isolation strategies, sequential enzyme purification, enzyme kinetics, and writing scientific reports

0 views • 25 slides


Enzyme Regulation and Factors Affecting Enzyme Activity

Organisms carefully control enzyme production and activation as per varying needs and conditions within cells. Enzyme activity is influenced by factors such as pH, temperature, regulatory molecules, cofactors, compartmentalization, covalent modification, and feedback inhibition. Enzymes can be regul

0 views • 20 slides


Overview of Pre-Steady-State Kinetics in Enzyme Reactions

Pre-steady-state kinetics is essential for studying transient stages in enzyme reactions, such as the burst phase. Techniques like rapid quench-flow and HPLC analysis provide insights into enzyme-substrate interactions. The Sir2 protein family, including SIRT1-7, plays crucial roles in cellular proc

0 views • 12 slides


Regulation of Enzyme Activity

Enzyme activity is regulated through various mechanisms including enzyme quantity regulation, allosteric regulation, induction, repression, and different models of allosteric regulation. Allosteric effectors can alter enzyme-substrate affinity and catalytic activity. Explore the diverse ways enzymes

0 views • 18 slides


Immobilized Enzyme

Enzyme immobilization is a crucial process in biotechnology to enhance enzyme stability and reusability. It allows for efficient separation of enzyme from products, reducing costs and increasing productivity. Various techniques, benefits, and criteria for successful immobilization are discussed in d

0 views • 41 slides


Quantitative Analysis of Enzyme Activity in Biochemistry

Dive into the fascinating world of enzyme kinetics with a focus on understanding and interpreting data through quantitative analysis. Explore the fundamentals of Michaelis-Menten kinetics, reaction rates, and experimental design to unravel the secrets of enzyme behavior in biological systems.

0 views • 17 slides


Properties of Allosteric Enzymes

An allosteric enzyme has distinct binding sites for regulators and substrates, affecting enzyme activity through conformational changes. Positive and negative effectors modulate enzyme function, showing sigmoid kinetics and cooperativity. Covalent modulation can further regulate allosteric enzymes i

0 views • 4 slides


Identification of Ionospheric Earthquake Precursors in Kamchatka

Investigating ionospheric variations preceding strong earthquakes in the Kamchatka region using correlation analysis. Method based on electron concentration changes in the ionosphere. Two ionospheric stations, PK553 and EA653, located in different geographic areas are analyzed for correlation coeffi

0 views • 12 slides


Estimation of Earthquake Occurrence Probability Based on Seismological and Ionospheric Precursors

Presentation on estimating earthquake occurrence probability in the Kamchatka region using a combination of seismological and ionospheric precursors. The method involves analyzing mid-term and short-term predictive signs to determine the probability of strong earthquakes. The study discusses the sei

0 views • 11 slides