Parameter - PowerPoint PPT Presentation


Dark Matter Search with ATLAS: Active Learning Application

Explore an active learning application in the search for dark matter using ATLAS PanDA and iDDS. Investigate Beyond Standard Model physics parameters related to Hidden Abelian Higgs Model and New Scalar with a focus on cross-section limit calculations. Understand the process for generating Monte Car

0 views • 16 slides


Building a local facet in Primo VE for Decolonization work

Explore the process of adding publisher/place of publication as a search parameter in Library Search, with insights on using MARC fields, establishing normalization rules, and steps to enable and translate local fields for effective faceted searching in Primo VE. Learn about the nuances of field rec

0 views • 19 slides



Understanding Routing Methods in Hydrologic Engineering Center (HEC-ResSim)

Explore the differences between hydrologic and hydraulic routing, learn about open channel flow processes, and delve into channel routing within HEC-ResSim. Discover various reach routing methods, parameter estimation techniques, and calibration approaches. Dive into the Muskingum method and its app

6 views • 29 slides


Intra-Distillation for Parameter Optimization

Explore the concept of parameter contribution in machine learning models and discuss the importance of balancing parameters for optimal performance. Introduce an intra-distillation method to train and utilize potentially redundant parameters effectively. A case study on knowledge distillation illust

7 views • 31 slides


Parameter and Feature Recommendations for NBA-UWB MMS Operations

This document presents recommendations for parameter and feature sets to enhance the NBA-UWB MMS operations, focusing on lowering testing costs and enabling smoother interoperations. Key aspects covered include interference mitigation techniques, coexistence improvements, enhanced ranging capabiliti

3 views • 18 slides


Enhancing Data Exchange for SDG Monitoring with Advanced SDMX Converter

Explore the advanced features of SDMX Converter that streamline data and metadata exchange for SDG monitoring. Learn about transcoding, parameter worksheets, and how to simplify mapping efforts for more efficient data processing.

6 views • 12 slides


Understanding Mean Effective Pressure in Internal Combustion Engines

Mean Effective Pressure (MEP) is a crucial parameter in internal combustion engines, representing the average pressure exerted on the piston during the power stroke. MEP is relatively consistent for specific engine types, making it a useful predictor of torque output based on engine type and displac

10 views • 20 slides


What is TDS

TDS stands for Total Dissolved Solids, a crucial parameter in water quality assessment. It refers to the combined content of all inorganic and organic substances dissolved in water. These substances can include minerals, salts, metals, ions, and other organic compounds.

0 views • 7 slides


Parameter Expression Calculator for Efficient Parameter Estimation from GIS Data

Parameter Expression Calculator within HEC-HMS offers a convenient tool to estimate loss, transform, and baseflow parameters using GIS data. It includes various options such as Deficit and Constant Loss, Green and Ampt Transform, Mod Clark Transform, Clark Transform, S-Graph, and Linear Reservoir. U

1 views • 5 slides


Understanding Image Histograms and Modifications

Image histograms provide valuable insights into the nature of images, with characteristics like width, skewness, and peaks revealing information about contrast, brightness, and objects within. Different types of histograms indicate varying image attributes, aiding in tasks like threshold parameter s

1 views • 13 slides


Search for Dark Photons Utilizing Advanced Germanium Detectors at University of South Dakota

Research at the University of South Dakota under the collaboration PIRE-GEMADARC focuses on developing advanced germanium detectors with low energy thresholds for detecting low mass dark photons. The study aims to optimize event detection using new Ge detectors with internal charge amplification. Th

0 views • 16 slides


Understanding Confidence Intervals in Statistics

Confidence intervals provide a range of plausible values for a parameter, increasing our confidence in the estimate. In this context, you will learn to interpret confidence intervals, determine point estimates and margins of error, and make decisions based on confidence intervals. The concept is ess

0 views • 13 slides


Understanding Classical Mechanics: Variational Principle and Applications

Classical Mechanics explores the Variational Principle in the calculus of variations, offering a method to determine maximum values of quantities dependent on functions. This principle, rooted in the wave function, aids in finding parameter values such as expectation values independently of the coor

0 views • 16 slides


Understanding Scope and Control Links in C Programming

This content delves into the intricacies of scoping rules, static vs. dynamic scope, activation records, access, and control links in C programming. It covers topics such as global and local variables, parameter passing styles, control flow, and the behavior of different variables within blocks. The

3 views • 20 slides


DNN Inference Optimization Challenge Overview

The DNN Inference Optimization Challenge, organized by Liya Yuan from ZTE, focuses on optimizing deep neural network (DNN) models for efficient inference on-device, at the edge, and in the cloud. The challenge addresses the need for high accuracy while minimizing data center consumption and inferenc

0 views • 13 slides


Understanding Canopy and Surface Methods in HEC-HMS

Explore the various canopy and surface methods utilized in HEC-HMS for managing water resources. Learn about canopy interception, evapotranspiration, common parameter values, and factors affecting losses. Delve into available methods, canopy storage values, and surface depression storage. Enhance yo

0 views • 12 slides


Hand Calculation of Odds Ratio Using JMP Results

Learn how to manually calculate odds ratios using JMP results. Follow step-by-step instructions to convert parameter estimates, derive odds ratios, and interpret results with confidence. Enhance your statistical analysis skills today!

0 views • 8 slides


Understanding Variable Declarations and Conversions in Java

Properly declaring variables in Java is essential before using them. This chapter covers different types of variable declarations, including class variables, instance variables, local variables, and parameter variables. It also explains the concept of type casting and the importance of explicitly de

1 views • 23 slides


Understanding Tail Bounds and Inequalities in Probability Theory

Explore concepts like Markov's Inequality, Chebyshev's Inequality, and their proofs in the context of random variables and probability distributions. Learn how to apply these bounds to analyze the tails of distributions using variance as a key parameter. Delve into examples with geometric random var

0 views • 27 slides


Network Compression Techniques: Overview and Practical Issues

Various network compression techniques such as network pruning, knowledge distillation, and parameter quantization are discussed in this content. The importance of pruning redundant weights and neurons in over-parameterized networks is highlighted. Practical issues like weight pruning and neuron pru

0 views • 37 slides


Understanding Naive Bayes Classifiers and Bayes Theorem

Naive Bayes classifiers, based on Bayes' rules, are simple classification methods that make the naive assumption of attribute independence. Despite this assumption, Bayesian methods can still be effective. Bayes theorem is utilized for classification by combining prior knowledge with observed data,

0 views • 16 slides


IEEE 802.11-21/0036r0 BSS Parameter Update Clarification

This document delves into the IEEE 802.11-21/0036r0 standard, specifically focusing on the BSS parameter update procedure within TGbe D0.2. It details how an AP within an AP MLD transmits Change Sequence fields, Critical Update Flags, and other essential elements in Beacon and Probe Response frames.

1 views • 11 slides


Understanding Root Locus Method in Control Systems

The root locus method in control systems involves tracing the path of roots of the characteristic equation in the s-plane as a system parameter varies. This technique simplifies the analysis of closed-loop stability by plotting the roots for different parameter values. With the root locus method, de

0 views • 41 slides


Understanding S-Parameter Measurements in Microwave Engineering

S-Parameter measurements in microwave engineering are typically conducted using a Vector Network Analyzer (VNA) to analyze the behavior of devices under test (DUT) at microwave frequencies. These measurements involve the use of error boxes, calibration techniques, and de-embedding processes to extra

0 views • 20 slides


Overview of Subprograms in Software Development

Subprograms in software development provide a means for abstraction and modularity, with characteristics like single entry points, suspension of calling entities, and return of control upon termination. They encompass procedures and functions, raising design considerations such as parameter passing

4 views • 25 slides


Enhancing Ecological Sustainability through Gamified Machine Learning

Improving human-computer interactions with gamification can help understand ecological sustainability better by parameterizing complex models. Allometric Trophic Network models analyze energy flow and biomass dynamics, but face challenges in parameterization. The Convergence Game in World of Balance

0 views • 12 slides


Code Assignment for Deduction of Radius Parameter (r0) in Odd-A and Odd-Odd Nuclei

This code assignment focuses on deducing the radius parameter (r0) for Odd-A and Odd-Odd nuclei by utilizing even-even radii data from 1998Ak04 input. Developed by Sukhjeet Singh and Balraj Singh, the code utilizes a specific deduction procedure to calculate radius parameters for nuclei falling with

1 views • 12 slides


Learning to Rank in Information Retrieval: Methods and Optimization

In the field of information retrieval, learning to rank involves optimizing ranking functions using various models like VSM, PageRank, and more. Parameter tuning is crucial for optimizing ranking performance, treated as an optimization problem. The ranking process is viewed as a learning problem whe

0 views • 12 slides


Efficient Parameter-free Clustering Using First Neighbor Relations

Clustering is a fundamental pre-Deep Learning Machine Learning method for grouping similar data points. This paper introduces an innovative parameter-free clustering algorithm that eliminates the need for human-assigned parameters, such as the target number of clusters (K). By leveraging first neigh

0 views • 22 slides


CEPC Partial Double Ring Parameter Update

The CEPC Partial Double Ring Layout features advantages like accommodating more bunches at Z/W energy, reducing AC power with crab waist collision, and unique machine constraints based on given parameters. The provided parameter choices and updates aim to optimize beam-beam effects, emittance growth

0 views • 14 slides


Foundations of Parameter Estimation and Decision Theory in Machine Learning

Explore the foundations of parameter estimation and decision theory in machine learning through topics such as frequentist estimation, properties of estimators, Bayesian parameter estimation, and maximum likelihood estimator. Understand concepts like consistency, bias-variance trade-off, and the Bay

0 views • 15 slides


Understanding Estimation and Statistical Inference in Data Analysis

Statistical inference involves acquiring information and drawing conclusions about populations from samples using estimation and hypothesis testing. Estimation determines population parameter values based on sample statistics, utilizing point and interval estimators. Interval estimates, known as con

0 views • 41 slides


Sampling and Parameter Fitting with Hawkes Processes

Learn about sampling and parameter fitting with Hawkes processes in the context of human-centered machine learning. Understand the importance of fitting parameters and sampling raw data event times. Explore the characteristics and fitting methods of Hawkes processes, along with coding assignments an

0 views • 20 slides


Linear Classifiers and Naive Bayes Models in Text Classification

This informative content covers the concepts of linear classifiers and Naive Bayes models in text classification. It discusses obtaining parameter values, indexing in Bag-of-Words, different algorithms, feature representations, and parameter learning methods in detail.

0 views • 38 slides


Insight into Tuning Check and Parameter Reconstruction Process

Delve into the process of tuning check and parameter reconstruction through a series of informative images depicting old tuning parameters and data sets. Explore how 18 data and 18 MC as well as 18 MC and 12 MC old tuning parameters play a crucial role in optimizing performance and accuracy. Gain va

0 views • 4 slides


Enhancement of TWT Parameter Set Selection in September 2017

Submission in September 2017 proposes improvements in TWT parameter selection for IEEE 802.11 networks. It allows TWT requesting STAs to signal repeat times, enhancing transmission reliability and reducing overheads. Non-AP STA challenges and current TWT setup signaling are addressed, providing a me

0 views • 12 slides


Hyper-Parameter Tuning for Graph Kernels via Multiple Kernel Learning

This research focuses on hyper-parameter tuning for graph kernels using Multiple Kernel Learning, emphasizing the importance of kernel methods in learning on structured data like graphs. It explores techniques applicable to various domains and discusses different graph kernels and their sub-structur

0 views • 20 slides


Exploring Metalearning and Hyper-Parameter Optimization in Machine Learning Research

The evolution of metalearning in the machine learning community is traced from the initial workshop in 1998 to recent developments in hyper-parameter optimization. Challenges in classifier selection and the validity of hyper-parameter optimization claims are discussed, urging the exploration of spec

0 views • 32 slides


Understanding Confidence Limits in Statistical Analysis

Confidence limits are a crucial concept in statistical analysis, representing the upper and lower boundaries of confidence intervals. They provide a range of values around a sample statistic within which the true parameter is expected to lie with a certain probability. By calculating these limits, r

0 views • 4 slides


Understanding Confidence Limits in Parameter Estimation

Confidence limits are commonly used to summarize the probability distribution of errors in parameter estimation. Experimenters choose both the confidence level and shape of the confidence region, with customary percentages like 68.3%, 95.4%, and 99%. Ellipses or ellipsoids are often used in higher d

0 views • 16 slides