Perturbation evolution - PowerPoint PPT Presentation


Earth-GRAM Overview and Updates 2023

Earth-GRAM is a global reference atmospheric model providing monthly mean and standard deviation data for various atmospheric variables. It is used in engineering for dispersion simulations but is not a forecasting model. Updates to Earth-GRAM include the Modern Era Retrospective Analysis, a global

0 views • 19 slides


Feynman Diagrams in Particle Physics

Feynman diagrams, developed by Richard Feynman in the 1940s, are a graphical technique to represent particle interactions in space-time. These diagrams use lines to depict particles, with fermions moving forward in time and antifermions moving backward. Vertices in the diagrams represent points wher

1 views • 19 slides



Interactive Tutorial on Degenerate Perturbation Theory: QuILT Development and Student Difficulties

Developing an interactive tutorial on Degenerate Perturbation Theory (DPT) to aid students in understanding the challenging synthesis of Quantum Mechanics concepts with Linear Algebra. The tutorial focuses on addressing common student difficulties, such as identifying good bases, diagonalizing matri

0 views • 12 slides


Time-Independent Perturbation Theory in Quantum Mechanics

Perturbation theory is a powerful tool in solving complex physical and mathematical problems approximately by adjusting solutions from a related problem with known solutions. This theory allows for more accurate approximate solutions by treating the difference as a small perturbation. An example inv

0 views • 19 slides


Investigating Chaos Seeding in Perturbation Experiments

This research project conducted at Texas Tech University delves into the effects of chaos seeding within perturbation experiments on atmospheric conditions, with a focus on local and nonlocal modifications resulting from factors such as irrigation, wind farms, and urban development. By analyzing tin

0 views • 24 slides


Interacting Fields and Feynman Diagrams in Quantum Field Theory

Delve into the fascinating world of quantum field theory with a focus on interacting fields and Feynman diagrams. Explore perturbation theory, correlation functions, Wick's theorem, and Feynman diagram rules to gain insights into preserving causality, calculating two-point correlation functions, and

0 views • 18 slides


COTEKINO Priority Project Summary

COTEKINO Priority Project involved developing and testing perturbation methodologies for convection-permitting ensembles across various operational weather services. Tasks included deriving perturbations, testing models, and coordinating with different agencies. The project aimed to enhance forecast

0 views • 9 slides


Lagrangian Perturbation Theory: Applications in Cosmology

Lagrangian Perturbation Theory (LPT) offers solutions for general dark energy models and is crucial for upcoming large-scale surveys. It provides a method to displace particles at large scales efficiently. While Standard Perturbation Theory (SPT) is limited at linear order, LPT overcomes its drawbac

0 views • 14 slides


Parameterized Post-Friedmann Framework for Interacting Dark Energy

Dive into the complexities of considering interacting dark energy (IDE) using a parameterized post-Friedmann framework. Learn why IDE is essential, how to detect couplings, calculate perturbation evolutions, and address instability issues. Explore the one-parameter extensions like wCDM and I.CDM, an

0 views • 18 slides


Axion Cosmology with Post-Newtonian Corrections

Exploring axion cosmology with post-Newtonian corrections, this study delves into linear density perturbations for dust, the role of axion as a cold dark matter candidate, and fully nonlinear perturbation formulations. It addresses continuity, momentum conservation, and quantum stress to identify ke

0 views • 22 slides


Atmospheric Modeling Task with Initial Conditions and Grid Setup

Create a model grid with 2D arrays for prognostic variables, set initial dry and adiabatic environmental conditions, introduce thermal and pressure perturbations, and visualize using GrADS. Define variables like velocities, perturbation temperature, and pressure fields, along with base state variabl

0 views • 27 slides


Chromaticity Compensation Options for the Ion Collider Ring

The MEIC Interaction Region faces challenges due to high beta functions causing chromatic perturbation. To address this, local compensation through Chromaticity Compensation Block (CCB) with sextupoles is proposed. Three CCB options are presented for consideration. The report explores the impact of

1 views • 17 slides


Differential Evolution: An Overview of the DE Algorithm

Differential Evolution (DE) is an Evolutionary Algorithm (EA) proposed for continuous function optimization. It uses vector differences to perturb the population, deviating from traditional crossover and mutation methods. DE involves mutation, perturbation, and various mutation schemes like DE/rand/

0 views • 20 slides


Governing Equations and Model Reduction in Continuous Stratified Models

Detailed analysis of the governing equations in a continuous stratified model with vertical mode decomposition and Sturm-Liouville problem. The density perturbation and pressure perturbation are examined to derive a reduced 3D system. The Boussinesq approximation and hydrostatic balance are applied,

0 views • 36 slides


Computational Complexity in Quantum Hamiltonians

The Bose-Hubbard model is proven to be QMA-complete, indicating the challenge in solving ground energy problems in quantum systems. Various classes of Hamiltonians, such as k-local and stoquastic, exhibit different complexities in computing ground energy. While some systems with QMA-complete ground

1 views • 40 slides


Enhancing Counterfactual Explanations for Improved Understanding

This article explores the concept of generating interpretable, diverse, and plausible counterfactual explanations within explainable AI (XAI). It highlights the challenges with current methods, introduces an instance-guided approach, and emphasizes the importance of good counterfactuals. The discuss

0 views • 22 slides


Randomized Numerical Linear Algebra (RandNLA)

Delve into the world of RandNLA, where randomization and sampling techniques are utilized to design accurate algorithms for handling massive matrices and computationally complex problems. Learn about sampling rows/columns, matrix perturbation theory, and its applications in Big Data, theoretical com

0 views • 83 slides


Degenerate Perturbation Theory in Quantum Mechanics

Exploring time-independent perturbation theory, specifically focusing on non-degenerate and degenerate spectra. The lecture covers approximation schemes, treatment of multi-electron atom term values, and the effects of spin-orbit interaction. Concepts include evaluating expectation values, wavefunct

0 views • 13 slides


Electron-Phonon Interactions in Iron-Based Superconductors

This discussion explores the effects of electron-phonon interactions on orbital fluctuations in iron-based superconductors. Topics covered include ab initio downfolding for electron-phonon coupled systems, evaluation methods such as Constrained Random Phase Approximation (cRPA), Constrained Density-

0 views • 12 slides


Evolution of Compact Star-Forming Galaxies and Quiescent Galaxies

The evolution of galaxies from compact star-forming to quiescent states involves processes such as secular evolution, gas inflows, and star formation quenching. By studying the structural relations and star formation in these galaxies, insights are gained into their transition towards quiescence. Th

1 views • 12 slides


The Scopes Monkey Trial: Clash of Cultures and Evolution Debate

Following World War I, the Scopes Monkey Trial in Tennessee marked a pivotal clash between urban and rural cultures over the teaching of evolution. The trial, prosecuted by William Jennings Bryan and defended by Clarence Darrow, resulted in teacher John Scopes being found guilty of violating the ant

0 views • 9 slides


Rules and Practices for Software Evolution Support

This content focuses on the importance of rules and practices to support software evolution, addressing challenges, benefits, and impact on ecosystems. It emphasizes the need for system-specific rules, automatic extraction of conventions, and client support. The evolution of software is highlighted

0 views • 65 slides


Software Evolution: Managing Change and Evolution in Organizational Systems

Software evolution is an essential process for organizations to maintain the value of their critical business assets. It involves adapting to new requirements, addressing errors, and enhancing performance. The majority of software budgets in large companies are dedicated to evolving existing systems

0 views • 61 slides


Darwin and the Theory of Evolution: A Comprehensive Overview

Darwin's Theory of Evolution encompasses the concepts of organisms changing over time and life evolving through natural selection. Influenced by scientists such as James Hutton, Jean Baptiste Lamarck, and Alfred Russel Wallace, Darwin's theory culminates in the idea of evolution by natural selection

0 views • 9 slides


Unveiling the Cosmic Evolution: A Journey Through Galaxies, Stars, and Empty Space

Delve into the intricate story of the universe's evolution from its hot dense origins to the vast cosmic web of stars and galaxies. Explore questions on stellar birth rates, interstellar medium influences, and the role of dark energy. Follow the journey of three students working on the Cosmic Evolut

0 views • 30 slides


Study on Ionospheric Perturbation Due to Solar and Geomagnetic Activity in Odessa Magnetic Anomaly

Research conducted in the area of the Odessa magnetic anomaly investigates ionospheric perturbations caused by solar and geomagnetic activity. The study utilizes radio astronomical and magnetometric observations from various observatories, highlighting the significance of the geomagnetic anomaly nea

1 views • 18 slides


Visualizing Ontology Evolution for Improved Knowledge Management

Ontologies are dynamic entities that evolve over time, impacting semantically-enabled applications and knowledge acquisition. This work focuses on identifying desired functionalities for ontology evolution systems, highlighting the steps involved in ontology evolution, and emphasizing the importance

0 views • 16 slides


Insights into Theoretical Approaches in NMR Spectroscopy

Theoretical approaches in NMR spectroscopy encompass diverse methods, each with varying degrees of approximation but yielding correct results within their validity. Techniques such as transition probabilities using the time-dependent perturbation theory, Zeeman interaction for energy level transitio

0 views • 32 slides


Flexoelectric Materials and Their Asymptotic Behavior in Crack Development

Explore the utilization of asymptotic approaches to analyze crack development in flexoelectric materials, considering the influence of intensity of applied stress, limitations, advantages, and the connection to singular perturbation methods. Discover the intriguing property of flexoelectric material

0 views • 17 slides


Evolution of Indo-European Languages through Phylogeny Estimation

Explore the evolution of Indo-European languages through phylogeny estimation under a model of linguistic character evolution. Follow the Computational Historical Linguistics Project's collaboration that began in 1994, leading to the development of methods and studies on homoplasy-free evolution and

0 views • 61 slides


Heuristic Approach for the Min-Max Multi-Depot Vehicle Routing Problem

This study explores a three-stage heuristic to solve the Min-Max Multi-Depot Vehicle Routing Problem (MDVRP), aiming to minimize the maximum distance traveled by vehicles. It covers an introduction to the problem, literature review, the importance of the min-max objective, and a heuristic solution m

0 views • 21 slides


The Strong CP Problem and Axions

In the realm of quantum chromodynamics, the strong CP problem and the role of axions are explored, shedding light on the U(1)A problem and its resolution. The content delves into the dynamics of quark condensates, Nambu-Goldstone bosons, and lattice QCD calculations unveiling the absence of U(1)A sy

0 views • 48 slides


Chaos Seeding and its Effects

The images and content discuss an inadvertent weather modification project aiming to determine atmospheric effects from various sources such as irrigation, wind farms, and urban development. The project explores both local and nonlocal modifications, highlighting potential downstream impacts. Throug

0 views • 23 slides


Quantum Physics Course at USTC: Foundations and Applications

Provide knowledge of quantum mechanics/chemistry concepts, tools, and mathematical skills. Topics include particle-in-box, harmonic oscillator, perturbation theory, electronic structure theory, and quantum entanglement. Quantum mechanics is vital for understanding atoms, molecules, chemical bonds, a

0 views • 30 slides


Benefits of Public Use Data and Redaction Strategies

Record-level data play a crucial role in society by enabling research, policy-making, skill development, and community understanding. Redaction strategies like data alteration, aggregation, and perturbation can help protect privacy while maintaining data utility. Synthetic data offers an alternative

0 views • 17 slides


Revealing Scalar-Induced Gravitational Waves: A Detailed Analysis

Exploring the realm of second-order gravitational waves in the context of perturbation theory, this work delves into the intricate calculations and implications of scalar-induced gravitational waves during radiation domination. The study investigates the direct link between inflation, smallest scale

0 views • 31 slides


Techniques for Protecting Frames in IEEE 802.11-17/0780r1 Ranging PHY Security

Explore techniques described in the May 2017 document to safeguard ranging measurements at the PHY level from various attacks such as denial-of-service, perturbation, and spoofing attacks. The document also presents an example overlay attack on NDP-based ranging and discusses example PHY security te

0 views • 11 slides


Understanding Classical Mechanics and Electromagnetism at USPAS, June 2018

Dive into a comprehensive review of classical mechanics and electromagnetism from the June 2018 USPAS program at MSU with topics covering oscillators, perturbation, special relativity, Lagrangians, Hamiltonians, phase-space, stability, canonical transformations, and accelerator Hamiltonians.

0 views • 13 slides


Analyzing Algorithms Beyond Worst-Case Scenarios

Explore the book "Beyond Worst-Case Analysis of Algorithms" by Uriel Feige from the Weizmann Institute, delving into chapters on topics like Perturbation Resilience, Approximation Stability, and more. Enhance your understanding of computational complexity and deepen your knowledge with potential cha

0 views • 43 slides


Evolution Theories and DNA Changes in Natural History

Explore the evolution theories of Linnaean Taxonomy, Lamarckian Evolution, Darwinian Evolution, and DNA changes that drive evolution. Understand how traits are inherited and how DNA mutations shape species over time.

0 views • 18 slides