Fusion fission reactors - PowerPoint PPT Presentation


Preoperative Bone Health Assessment in Spine Fusion Surgery

This presentation by Dr. Mark L. Prasarn focuses on the importance of assessing preoperative bone health in older patients undergoing spine fusion surgery. It covers the potential bone-related complications, osteogenesis process, osteoconduction, osteoinduction, and the favorable biomechanical envir

1 views • 67 slides


Risks and Warning Signs of Small Modular Reactors (SMRs)

Small Modular Reactors (SMRs) are nuclear reactors with a power capacity of 300 megawatts or smaller. Despite potential benefits, there are significant risks associated with SMRs, including cost overruns, schedule delays, lack of construction, and high power prices. The industry's track record raise

4 views • 22 slides



Insights on Fragment Spin Generation in Fission: What We Know

Considerable insight was generated from a recent conference on fission, shedding light on crucial theoretical and experimental aspects. Key topics include angular momentum, fission-fragment spin references, and the dynamics of nuclear fission. Theoretical advancements like the TDSLDA model and super

3 views • 41 slides


Exploring Fission Near 198Pb with AT-TPC at FRIB: Insights from Curtis Hunt

Delve into the intriguing world of fission studies near 198Pb using the AT-TPC at FRIB. Supported by the DOE Office of Science, this research probes nuclear structure, fission properties, and fusion-fission reactions. By employing innovative techniques like the Heavy Isotope Tagger and active target

1 views • 39 slides


Research Program on Spin Polarized Nuclei in Fusion Plasmas

Examination of spin polarized fuel in fusion plasmas to enhance energy production efficiency. Planned experiments aim to measure the lifetime of polarized nuclei for optimized fusion reactions. Key aspects include depolarization mechanisms, neutral beam heating, and fueling techniques with pellets.

1 views • 36 slides


Investigating Be Dust Generation for Fusion Reactors

Investigate the properties of beryllium (Be) dust particles generated using milling techniques for fusion reactors. The study involves analyzing particle size, morphology, crystal orientation, and thermal behavior of Be dust in air and water environments. Laboratory experiments will be conducted to

2 views • 5 slides


Reactor Sizing and Conversion in Chemical Engineering

This chapter explores the sizing of Continuous Stirred Tank Reactors (CSTR) and Plug Flow Reactors (PFR) using conversion values and overall conversion. It covers the definition of conversion, batch reactor design equations, design equations for flow reactors, and more. The content delves into the m

0 views • 17 slides


Understanding Nuclear Fusion and Fission in Atoms

Nuclear fusion is the process where two atomic nuclei combine, releasing energy and forming a new element. This process occurs in stars where hydrogen fuses to create heavier elements. On the other hand, nuclear fission involves the splitting of an atomic nucleus, releasing energy. Understanding the

3 views • 35 slides


Advanced Fission Experiments at University of Michigan

The University of Michigan, under the guidance of Dr. Sara A. Pozzi, conducts cutting-edge fission experiments leveraging organic scintillation detectors. These detectors offer advantages such as nanosecond-scale response times, energy proportionality, and scalability. The experiments focus on impro

0 views • 4 slides


INFUSE Program Overview: Public-Private Partnership for Fusion Energy

The Innovation Network for Fusion Energy (INFUSE) Program, initiated by the Office of Fusion Energy Sciences, is a Public-Private Partnership (P3) designed to facilitate access to DOE laboratory capabilities for companies in fusion energy research. This program, modeled after successful DOE P3 initi

0 views • 12 slides


Advancing Sustainable Nuclear Energy in Central Europe with Fast Reactors

Explore the potential of G4 fast reactors for advancing sustainable nuclear energy in Central Europe. Learn how fast neutron spectrum reactors can help address uranium stock depletion, waste elimination, and fuel cycle closure. Discover the regional long-term solution proposed for V4 countries and t

0 views • 12 slides


Development of Cumulative Fission Yield Covariances for Uncertainty Quantification

This study by A.A. Sonzogni and E.A. McCutchan focuses on developing cumulative fission yield covariances for uncertainty quantification in nuclear reactors. The research involves calculating cumulative fission yields, using decay data and nuclear databases, to improve accuracy in predicting fission

0 views • 5 slides


Introduction to Reactor Physics and Nuclear Fission

Explore the fundamentals of reactor physics, neutron interaction, and nuclear fission in this virtual training course on criticality safety management. Delve into the history of nuclear fission, symbolisms for atoms, and the significance of critical reactors like Fermi's Chicago Pile. Gain insights

0 views • 73 slides


Advanced Burner Reactor Concept and Subcritical SABR Design

Discusses the rationale behind fusion-fission hybrid fast burner reactors, focusing on the SABR concept for spent nuclear fuel transmutation. The SABR design aims to address challenges in nuclear power generation, waste disposal, and fuel efficiency by utilizing a subcritical advanced burner reactor

0 views • 15 slides


Insights on Small Modular Reactors (SMRs) in the UK

Steve Thomas presents an overview of Small Modular Reactors (SMRs), highlighting the challenges and misconceptions surrounding their development and commercial availability. The discussion covers various claims about SMRs, their categorization, and the current status of Advanced Modular Reactors (AM

0 views • 17 slides


NRC Licensing of Advanced Reactors and NuScale Small Modular Reactor Design Overview

Overview of NRC licensing process for advanced reactors, including a focus on Small Modular Reactors under 10 CFR Parts 50 and 52. Details on licensing options, such as Conceptual Design Assessment and Prototype Plants, are discussed. NuScale's Small Modular Reactor design, featuring passive safety

4 views • 12 slides


Advancements in Fusion Reactor Technology: A Comprehensive Overview

This presentation delves into the nuclear design aspects, objectives, background, and state-of-the-art components of the GT Fusion DEMO Reactor project. It covers key areas such as tritium breeding ratio, neutron transport, temperature distribution, and material choices for optimal reactor performan

0 views • 31 slides


Key Fusion Reactions in Nuclear Astrophysics

Fusion reactions play a crucial role in nuclear astrophysics, with key reactions involving light elements such as Li, Be, B, and stable carbon isotopes. Understanding fusion of light heavy nuclei at extreme energies is essential for predicting stellar evolution. The S-factor provides a convenient re

0 views • 31 slides


Implementation of Angular Momentum Formalism in Low-Energy Fusion Reactions

This update focuses on integrating the angular momentum formalism into low-energy fusion reactions using the LISE++ platform. It explores fission barriers, potential energy pockets, compound formation, and de-excitation processes in fusion reactions. The documentation delves into fusion residue tran

0 views • 25 slides


Effectiveness of Np-237 Transmutation in QUINTA Setup

Np-237 transmutation effectiveness in the QUINTA setup depends on beam particle type and energy. The challenging nature of Np-237, with a long half-life and accumulation in nuclear waste, necessitates fission for disposal. Neutron capture results in the production of other actinides, making fission

0 views • 20 slides


Study of Nuclear Fission Process Through Gamma-Ray Spectrometry

Delve into the nuclear fission process through prompt gamma-ray spectrometry, exploring motivations, experimental data, and preliminary results. Understand the gamma heating process in nuclear reactors and its significance in reactor safety. Contextualize the study within Generation III+ and IV reac

0 views • 86 slides


Understanding Tooth Fusion in Dentistry

Tooth fusion is the merging of two tooth germs into a single large crown, which can be complete or incomplete depending on the developmental stage. It can affect primary dentition, mostly incisors and canines. Differentiating fusion from gemination involves examining the pulp chambers. Causes may in

0 views • 9 slides


Fusion Science Department Enabling Research Projects 2021-2023

The Fusion Science Department Enabling Research Projects for 2021-2023 focus on developing novel fusion-relevant scientific and technological ideas. These projects, led by Principal Investigators, are distinct from main work packages and involve scientific planning, team collaboration, and resource

0 views • 11 slides


Understanding Hydrogen Isotope Influence on H-Mode Confinement in Fusion Plasmas

Knowledge of how the hydrogen isotope impacts H-mode confinement is crucial for predicting energy confinement in future fusion plasmas. Research explores the relationship between isotope mass and confinement time, highlighting the optimistic outlook for future reactors. Experimental studies on hydro

0 views • 13 slides


Optimizing Operator Fusion Plans for Large-Scale Machine Learning in SystemML

The research focuses on optimizing fusion plans for large-scale machine learning in SystemML. It discusses the motivation behind fusion opportunities, the need for optimizing fusion plans, and system architecture considerations. The study emphasizes the challenges in heuristic fusion planning for co

0 views • 17 slides


Exploring Nuclear Fusion and Stellar Evolution

Nuclear fusion is a powerful process where atomic nuclei combine to form larger atoms, releasing significant energy. Stars like the Sun rely on fusion to generate energy, creating new elements in the process. The death of a star can lead to the formation of heavier elements that eventually contribut

0 views • 21 slides


Understanding Nuclear Reactions: Fission, Fusion, and Energy Release

This content covers various aspects of nuclear reactions, including nuclear fission, fusion reactions, the Manhattan Project, and examples of reactions involving different particles and elements. It explains concepts like exoergic and endoergic reactions, conservation of charge and nucleon number, a

0 views • 34 slides


Understanding Nuclear Reactions: Fusion, Fission, and Energy Production

Explore the fundamental concepts of nuclear reactions, including fusion and fission, the conversion of mass into energy, and the role of fusion in energy production. Discover how the sun and stars shine through fusion reactions and how we can replicate this process on Earth using isotopes of hydroge

0 views • 6 slides


Introduction to Chemical Reaction Engineering (CRE)

Chemical Reaction Engineering (CRE) focuses on studying the rates and mechanisms of chemical reactions, as well as designing reactors for these reactions. The field involves understanding balances in terms of molar flow rates, mole balances, rate laws, stoichiometry, and membrane reactors. Membrane

0 views • 20 slides


Advanced Plasma Control Strategies for Fusion Reactors Weekly Meeting

Explore proposals on divertor plugging, effect of planar coil currents, Poincare maps, and main goal of loading PFCs for fusion reactors. The discussions aim to enhance plasma control strategies and optimize reactor performance.

0 views • 6 slides


Innovations in Reprocessing Spent MOX Fuel for Sustainable Nuclear Energy

Discussion at the FR22 Conference focuses on the potential for fast reactors to modify the isotopic composition of plutonium from spent MOX fuel of PWRs. By utilizing fast reactors like BN-800, countries can alter the fissile isotopes in plutonium, enabling its reuse in thermal reactors and effectiv

0 views • 8 slides


Chemical Reactor Design: Unsteady State and Nonisothermal Reactors

Developing energy balances for unsteady state and nonisothermal reactors is essential for designing efficient chemical reactors. The energy balances involve terms such as heat flow, work done, energy accumulation, and mass flow, which impact the reactor's performance. By considering factors like pha

0 views • 29 slides


Understanding Nuclear Fission Cross Sections

Nuclear fission cross sections play a crucial role in determining reaction rates in nuclear reactors and experiments. They represent the probability of nuclear interactions when neutrons collide with a nucleus, impacting fission and capture rates. These cross sections are influenced by factors such

0 views • 15 slides


Progress Update on Nuclear Data Research at LLNL

Nuclear Data Advisory Group received an online report from Lawrence Livermore National Laboratory detailing progress on various projects, including thermal neutron scattering laws processing, fission data measurements, and PPAC fission chamber development for 240Pu. The report outlines successful te

0 views • 19 slides


Understanding Nuclear Fission: Process, Examples, and Energy Generation

Nuclear fission involves the splitting of an atomic nucleus, with uranium-235 being a commonly used fissile material. When uranium-235 undergoes fission, it produces fission fragments, neutrons, gamma radiation, and kinetic energy. The fission process can be initiated by absorbing a slow-moving neut

0 views • 19 slides


Proposal for Comprehensive Functional Testing of Blanket Modules in Fusion Reactors

The proposal discusses the need for advanced functional tests of blanket modules in fusion reactors due to the delay in the ITER program. Emphasizing the importance of early nuclear functional testing, it suggests considering partial models for assessments beyond tritium release, such as nuclear hea

0 views • 4 slides


Introduction to Chemical Reaction Engineering

Chemical Reaction Engineering (CRE) is crucial for understanding how chemical reactors operate in various processing operations. This field involves reactor design by integrating factors such as thermodynamics, kinetics, fluid mechanics, heat transfer, and economics. CRE aims to effectively design a

0 views • 16 slides


Reactor Design Equations: Basics and Applications

This material covers the foundational concepts of reactor design equations, focusing on molar balance in batch reactors, continuous stirred tank reactors (CSTRs), and plug flow reactors (PFRs). Through detailed explanations and illustrative examples, you will gain a comprehensive understanding of ho

0 views • 20 slides


Plutonium Burning Fast Reactors for Reducing PWR Stockpile

Workshop presenting the utilization of plutonium burning fast reactors to decrease PWR irradiated assemblies stockpile through the CAPRA project. The performance and impact on plutonium inventory are assessed, highlighting the potential reduction and the additional reprocessing and manufacturing req

0 views • 16 slides


Development of EIRENE-NGM for Neutral Gas Dynamics in Fusion Reactors

EIRENE-NGM project focuses on enhancing the neutral gas dynamics model for fusion reactor simulations, including efficient HPC utilization, physics basis refinement, database improvement, interface development, and predictive capability validation. Collaborators from various institutes aim to create

0 views • 17 slides