Study of Nuclear Fission Process Through Gamma-Ray Spectrometry

undefined
S
t
u
d
y
 
o
f
 
t
h
e
 
n
u
c
l
e
a
r
f
i
s
s
i
o
n
 
p
r
o
c
e
s
s
 
b
y
p
r
o
m
p
t
 
g
a
m
m
a
-
r
a
y
s
p
e
c
t
r
o
m
e
t
r
y
PHENIICS Fest, Orsay, 30 May 2017
M
ICHAŁ
 R
ĄPAŁA
Motivations
Experimental data
EXILL experiment
Preliminary results
Ba – Kr
Conclusions
P
R
E
S
E
N
T
A
T
I
O
N
 
O
U
T
L
I
N
E
M. Rapala, IRFU/DPhN/LERN
Page 2
May 30, 2017
 
M. Rapala, IRFU/DPhN/LERN
Page 3
May 30, 2017
Motivations
G
A
M
M
A
 
H
E
A
T
I
N
G
 
P
R
O
C
E
S
S
 
I
N
 
A
 
N
U
C
L
E
A
R
 
R
E
A
C
T
O
R
M. Rapala, IRFU/DPhN/LERN
Page 4
May 30, 2017
Result of gamma-ray energy
deposition
HTMR Asia Development Limited,
http://www.htmr-asia.com/en/product.php?id=27 (2014)
G
A
M
M
A
 
H
E
A
T
I
N
G
 
P
R
O
C
E
S
S
 
I
N
 
A
 
N
U
C
L
E
A
R
 
R
E
A
C
T
O
R
M. Rapala, IRFU/DPhN/LERN
Page 5
May 30, 2017
Result of gamma-ray energy
deposition
S. Sen et al., Nuclear Engineering and Design Vol. 293,
Pages 323-329 (2015)
HTMR Asia Development Limited,
http://www.htmr-asia.com/en/product.php?id=27 (2014)
Areva , UK-EPR, Fundamental safety overview Vol. 1,
Chapter A, Page 63
Almost 100% of total heating in the reflector
G
A
M
M
A
 
H
E
A
T
I
N
G
 
P
R
O
C
E
S
S
 
I
N
 
A
 
N
U
C
L
E
A
R
 
R
E
A
C
T
O
R
M. Rapala, IRFU/DPhN/LERN
Page 6
May 30, 2017
A-C. Colombier et al., EPJ Web of Conferences 42, 04001 (2013)
C
O
N
T
E
X
T
 
O
F
 
T
H
E
 
S
T
U
D
Y
M. Rapala, IRFU/DPhN/LERN
Page 7
May 30, 2017
C
O
N
T
E
X
T
 
O
F
 
T
H
E
 
S
T
U
D
Y
M. Rapala, IRFU/DPhN/LERN
Page 8
May 30, 2017
What we want to study:
Fission process
Prompt gamma-ray cascade in fission fragments
F
I
S
S
I
O
N
 
P
R
O
C
E
S
S
M. Rapala, IRFU/DPhN/LERN
Page 9
May 30, 2017
Courtesy of J.F. Lemaître, SPhN, IRFU, DRF, CEA Saclay
F
I
S
S
I
O
N
 
F
R
A
G
M
E
N
T
 
D
E
E
X
C
I
T
A
T
I
O
N
M. Rapala, IRFU/DPhN/LERN
Page 10
May 30, 2017
The continuum
The part partially
completed from
the models
The experimental
nuclear levels
O. Litaize et al., ND-2016, Bruges
Main questions concerning de-excitation process:
What happens after the scission point?
P
R
O
M
P
T
 
G
A
M
M
A
-
R
A
Y
 
C
A
S
C
A
D
E
M. Rapala, IRFU/DPhN/LERN
Page 11
May 30, 2017
How is the excitation energy
shared between the two
fragments?
What are the initial spin
distributions?
Are they correlated?
What is the process that
generates high spin in the
fragment?
Simulates fission fragments de-excitation
F
I
F
R
E
L
I
N
 
M
O
N
T
E
-
C
A
R
L
O
 
S
I
M
U
L
A
T
I
O
N
 
C
O
D
E
M. Rapala, IRFU/DPhN/LERN
Page 12
May 30, 2017
 
M. Rapala, IRFU/DPhN/LERN
Page 13
May 30, 2017
Experimental data
E
X
O
G
A
M
 
E
X
P
E
R
I
M
E
N
T
 
A
T
 
I
L
L
 
-
 
E
X
I
L
L
M. Rapala, IRFU/DPhN/LERN
Page 14
May 30, 2017
Array of Ge-detectors around a fissile target in a
intense cold neutron beam
15 days with 
235
U (575 μg/cm
2
) + Sn/Zr
5 days with 
235
U (675 μg/cm
2
) + Be
15 days with 
241
Pu (300 μg/cm
2
) + Be
8 EXOGAM clovers + 2
ILL clovers + 6 GASP
Ge + BGO shielding
Without LaBr
3
 detectors
Analysis of 
235
U data
D
A
T
A
 
A
N
A
L
Y
S
I
S
M. Rapala, IRFU/DPhN/LERN
Page 15
May 30, 2017
Triple-
 coincidence
Analysis software
Choosing gates
Selecting fission
fragments
Fitting spectra in
triple-

coincidence
Calculating relative
intensity of the
gamma-ray transition
and anticipation of
the uncertainty
propagation
 
M. Rapala, IRFU/DPhN/LERN
Page 16
May 30, 2017
Triple-

coincidence in practice
R
A
W
 
D
A
T
A
M. Rapala, IRFU/DPhN/LERN
Page 17
May 30, 2017
G
A
T
E
S
 
S
E
L
E
C
T
I
O
N
M. Rapala, IRFU/DPhN/LERN
Page 18
May 30, 2017
Urban et al., Nucl. Phys A 613 (1997) 107
Rząca-Urban et al., Eur. Phys. J. A 9 (2000) 165
G
A
T
E
S
 
S
E
L
E
C
T
I
O
N
M. Rapala, IRFU/DPhN/LERN
Page 19
May 30, 2017
Urban et al., Nucl. Phys A 613 (1997) 107
Rząca-Urban et al., Eur. Phys. J. A 9 (2000) 165
S
I
M
P
L
E
 
C
O
I
N
C
I
D
E
N
C
E
 
O
U
T
C
O
M
E
M. Rapala, IRFU/DPhN/LERN
Page 20
May 30, 2017
7
6
9
.
0
k
e
V
Cleaner spectrum
Still high background and many contaminants
T
R
I
P
L
E
-
 
C
O
I
N
C
I
D
E
N
C
E
 
O
U
T
C
O
M
E
M. Rapala, IRFU/DPhN/LERN
Page 21
May 30, 2017
3
5
9
.
5
k
e
V
7
6
9
.
0
k
e
V
Clean spectrum
Reduced background
Clearly visible peaks
92
Kr
142
Ba
P
E
A
K
 
I
D
E
N
T
I
F
I
C
A
T
I
O
N
M. Rapala, IRFU/DPhN/LERN
Page 22
May 30, 2017
Preliminary Results
 
M. Rapala, IRFU/DPhN/LERN
Page 23
May 30, 2017
Gamma-ray cascade
P
R
E
L
I
M
I
N
A
R
Y
 
R
E
S
U
L
T
S
M. Rapala, IRFU/DPhN/LERN
Page 24
May 30, 2017
G
a
m
m
a
-
r
a
y
 
c
a
s
c
a
d
e
 
i
n
 
1
4
2
B
a
a
c
c
o
r
d
i
n
g
 
t
o
 
F
I
F
R
E
L
I
N
T. Materna et al., accepted for publ. In EPJ Web of Conferences (2017)
Gamma-ray cascade
P
R
E
L
I
M
I
N
A
R
Y
 
R
E
S
U
L
T
S
M. Rapala, IRFU/DPhN/LERN
Page 25
May 30, 2017
G
a
m
m
a
-
r
a
y
 
c
a
s
c
a
d
e
 
i
n
 
1
4
2
B
a
a
c
c
o
r
d
i
n
g
 
t
o
 
F
I
F
R
E
L
I
N
G
a
m
m
a
-
r
a
y
 
c
a
s
c
a
d
e
 
i
n
 
1
4
2
B
a
a
c
c
o
r
d
i
n
g
 
t
o
 
E
X
I
L
L
 
d
a
t
a
T. Materna et al., accepted for publ. In EPJ Web of Conferences (2017)
T. Materna et al., accepted for publ. In EPJ Web of Conferences (2017)
Gamma-ray cascade
P
R
E
L
I
M
I
N
A
R
Y
 
R
E
S
U
L
T
S
M. Rapala, IRFU/DPhN/LERN
Page 26
May 30, 2017
G
a
m
m
a
-
r
a
y
 
c
a
s
c
a
d
e
 
i
n
 
1
4
2
B
a
a
c
c
o
r
d
i
n
g
 
t
o
 
F
I
F
R
E
L
I
N
T. Materna et al., accepted for publ. In EPJ Web of Conferences (2017)
Gamma-ray cascade
Good agreement for
low spin transitions
High spin transitions
overestimated by
FIFRELIN code
P
R
E
L
I
M
I
N
A
R
Y
 
R
E
S
U
L
T
S
M. Rapala, IRFU/DPhN/LERN
Page 27
May 30, 2017
Gamma-ray cascade
Good agreement for
low spin transitions
High spin transitions
overestimated by
FIFRELIN code
Probably wrong
estimation of a mean
value of the fission
fragment spin
distribution
P
R
E
L
I
M
I
N
A
R
Y
 
R
E
S
U
L
T
S
M. Rapala, IRFU/DPhN/LERN
Page 28
May 30, 2017
Dependence on a complementary fragment (neutron
evaporation)
P
R
E
L
I
M
I
N
A
R
Y
 
R
E
S
U
L
T
S
M. Rapala, IRFU/DPhN/LERN
Page 29
May 30, 2017
Dependence on a complementary fragment (neutron
evaporation)
P
R
E
L
I
M
I
N
A
R
Y
 
R
E
S
U
L
T
S
M. Rapala, IRFU/DPhN/LERN
Page 30
May 30, 2017
In FIFRELIN initial spin is
constant
P
R
E
L
I
M
I
N
A
R
Y
 
R
E
S
U
L
T
S
M. Rapala, IRFU/DPhN/LERN
Page 31
May 30, 2017
J [ħ]
E
ex
[MeV]
4 neutrons
3 neutrons
2 neutrons
1 neutron
0 neutrons
In FIFRELIN initial spin is
constant
Neutron evaporation follows
the mean value of the level
density distribution
P
R
E
L
I
M
I
N
A
R
Y
 
R
E
S
U
L
T
S
M. Rapala, IRFU/DPhN/LERN
Page 32
May 30, 2017
J [ħ]
E
ex
[MeV]
4 neutrons
3 neutrons
2 neutrons
1 neutron
0 neutrons
In FIFRELIN initial spin is
constant
Neutron evaporation follows
the mean value of the level
density distribution
With more evaporated
neutrons less high spin
transitions are produced
P
R
E
L
I
M
I
N
A
R
Y
 
R
E
S
U
L
T
S
M. Rapala, IRFU/DPhN/LERN
Page 33
May 30, 2017
J [ħ]
E
ex
[MeV]
4 neutrons
3 neutrons
2 neutrons
1 neutron
0 neutrons
Conclusions
 
M. Rapala, IRFU/DPhN/LERN
Page 34
May 30, 2017
Systematic study of the prompt gamma-ray cascades
of the fission fragments
Triple-
 coincidence technique
Analysis made on a few (the most abundant) fission fragment
pairs
Results will help to improve simulations of gamma heating in
nuclear reactors
Benchmarking the MC simulation code FIFRELIN
Comparison to FIFRELIN simulation results
Some effects need further investigation
C
O
N
C
L
U
S
I
O
N
S
M. Rapala, IRFU/DPhN/LERN
Page 35
May 30, 2017
T. Materna
1
, A. Letourneau
1
, A. Marchix
1
, O. Litaize
2
, O.
Sérot
2
, D. Regnier
2
, W. Urban
3
, A. Blanc
4
, M. Jentschel
4
, U.
Köster
4
, P. Mutti
4
, T. Soldner
4
, G. Simpson
5
, 
Călin A. Ur
6
, and
G. de France
7
1
 Irfu, Université Paris-Saclay, Gif-sur-Yvette, France
2
 CEA, DEN, DER, Cadarache, Saint-Paul-lez-Durance, France
3
 
Faculty of Physics, University of Warsaw, Warsaw, Poland
4
 Institut Laue-Langevin, Grenoble, France
5
 LPSC, CNRS/IN2P3, Grenoble, France
6
 INFN, Legnaro, Italy
7
 GANIL, Caen, France
C
O
L
L
A
B
O
R
A
T
I
O
N
M. Rapala, IRFU/DPhN/LERN
Page 36
May 30, 2017
undefined
CEA Saclay
Data analysis technique
development
Data analysis
Gathering information about
gamma-ray cascade
Comparing experimental data
with simulation results
CEA Cadarache
Comparing experimental data
with simulation results
Testing different parameter
setups
Improving simulation code
P
H
D
 
A
I
M
S
M. Rapala, IRFU/DPhN/LERN
Page 38
May 30, 2017
Too high uncertainty
Too high statistical error
Peak shape too complicated
Problems with detectors energy resolution and tails
Our peak looks like triple Gaussian + Compton
Additional peaks needed to reproduce the correct shape
Wrong volume of the peaks
Contaminants included in the gates
F
I
T
T
I
N
G
 
P
R
O
B
L
E
M
S
M. Rapala, IRFU/DPhN/LERN
Page 39
May 30, 2017
D
E
T
E
C
T
I
O
N
 
S
Y
S
T
E
M
 
C
A
L
I
B
R
A
T
I
O
N
M. Rapala, IRFU/DPhN/LERN
Page 40
May 30, 2017
Europium source data used for calibration
   
152
Eu        
152
Gd or 
152
Sm
Three types of detectors with different performance
Europium source data used for calibration
   
152
Eu        
152
Gd or 
152
Sm
Three types of detectors with different performance
Total coincidence efficiency formula simplification
D
E
T
E
C
T
I
O
N
 
S
Y
S
T
E
M
 
C
A
L
I
B
R
A
T
I
O
N
M. Rapala, IRFU/DPhN/LERN
Page 41
May 30, 2017
Europium source data used for calibration
   
152
Eu        
152
Gd or 
152
Sm
Three types of detectors with different performance
Total coincidence efficiency formula simplification
D
E
T
E
C
T
I
O
N
 
S
Y
S
T
E
M
 
C
A
L
I
B
R
A
T
I
O
N
M. Rapala, IRFU/DPhN/LERN
Page 42
May 30, 2017
Europium source data used for calibration
   
152
Eu        
152
Gd or 
152
Sm
Three types of detectors with different performance
Total coincidence efficiency formula simplification
Difference lower than 2% in range between 100keV to 1.5MeV
D
E
T
E
C
T
I
O
N
 
S
Y
S
T
E
M
 
C
A
L
I
B
R
A
T
I
O
N
M. Rapala, IRFU/DPhN/LERN
Page 43
May 30, 2017
Europium source data used for calibration
   
152
Eu        
152
Gd or 
152
Sm
Three types of detectors with different performance
Total coincidence efficiency formula simplification
Correction of true coincidence effect
D
E
T
E
C
T
I
O
N
 
S
Y
S
T
E
M
 
C
A
L
I
B
R
A
T
I
O
N
M. Rapala, IRFU/DPhN/LERN
Page 44
May 30, 2017
Energy [keV]
Efficiency [%]
Energy [keV]
Efficiency [%]
91
Zr(n,
)
92
Zr peak at 1405 keV
FWHM equal to 3.7 keV
Chi
2
/NDF equal to 1.7
E
X
I
L
L
 
R
E
S
O
L
U
T
I
O
N
M. Rapala, IRFU/DPhN/LERN
Page 45
May 30, 2017
Peak shape
Not a simple Gaussian
Gating with subtracted background
Choosing correct background
Peak/Background ratio
Gates width
Contaminants in the gates
Gates width
S
P
E
C
T
R
A
 
F
I
T
T
I
N
G
 
P
R
O
B
L
E
M
S
M. Rapala, IRFU/DPhN/LERN
Page 46
May 30, 2017
S
P
E
C
T
R
A
 
F
I
T
T
I
N
G
 
P
R
O
B
L
E
M
S
 
-
 
P
E
A
K
/
B
A
C
K
G
R
O
U
N
D
M. Rapala, IRFU/DPhN/LERN
Page 47
May 30, 2017
Better value of the peak/background ratio
2 bins gate width
1 bin gate width
S
P
E
C
T
R
A
 
F
I
T
T
I
N
G
 
P
R
O
B
L
E
M
S
 
-
 
C
O
N
T
A
M
I
N
A
T
I
O
N
M. Rapala, IRFU/DPhN/LERN
Page 48
May 30, 2017
Better
visibility of
contaminants
More precise
contamination
positioning
More precise
results
Lower
uncertainty
2 bins gate width
1 bin gate width
Dependence on a complementary fragment (neutron
evaporation)
P
R
E
L
I
M
I
N
A
R
Y
 
R
E
S
U
L
T
S
M. Rapala, IRFU/DPhN/LERN
Page 49
May 30, 2017
Effect caused by dependence
between excitation energy and
level density
Dependence on a complementary fragment (neutron
evaporation)
P
R
E
L
I
M
I
N
A
R
Y
 
R
E
S
U
L
T
S
M. Rapala, IRFU/DPhN/LERN
Page 50
May 30, 2017
Effect caused by dependence
between excitation energy and
level density
More evaporated neutrons
Lower excitation energy of the
fission fragments after
neutron evaporation
Lower probability of high-spin
transition production
G
A
T
E
S
 
S
E
L
E
C
T
I
O
N
M. Rapala, IRFU/DPhN/LERN
Page 51
May 30, 2017
G
A
T
E
S
 
S
E
L
E
C
T
I
O
N
M. Rapala, IRFU/DPhN/LERN
Page 52
May 30, 2017
T
R
I
P
L
E
-
 
C
O
I
N
C
I
D
E
N
C
E
 
O
U
T
C
O
M
E
M. Rapala, IRFU/DPhN/LERN
Page 53
May 30, 2017
3
5
9
.
5
k
e
V
7
6
9
.
0
k
e
V
T
R
I
P
L
E
-
 
C
O
I
N
C
I
D
E
N
C
E
 
O
U
T
C
O
M
E
M. Rapala, IRFU/DPhN/LERN
Page 54
May 30, 2017
Clean spectrum
Reduced background
Clearly visible peaks
Three-dimensional histogram
γγγ
-cube
T
R
I
P
L
E
-
 
C
O
I
N
C
I
D
E
N
C
E
M. Rapala, IRFU/DPhN/LERN
Page 55
May 30, 2017
Fixed time window
Transitions coming
within the time
window limit are
considered to be
in coincidence
Selection of fission fragments
Gating (with back ground subtraction)
Identification of peaks
A
N
A
L
Y
S
I
S
 
S
C
H
E
M
E
M. Rapala, IRFU/DPhN/LERN
Page 56
May 30, 2017
Selection of fission fragments
Gating (with back ground subtraction)
Identification of peaks
Fitting of the peaks
Fitting with simple Gaussian
Fit integration
Calculation of normalized intensities of the peaks
Normalized to the most intense transition of the particular
fission fragment
Comparison to other experimental data and FIFRELIN
simulation results
A
N
A
L
Y
S
I
S
 
S
C
H
E
M
E
M. Rapala, IRFU/DPhN/LERN
Page 57
May 30, 2017
C
O
N
T
E
X
T
 
O
F
 
T
H
E
 
T
H
E
S
I
S
M. Rapala, IRFU/DPhN/LERN
Page 58
May 30, 2017
C
E
A
,
 
D
P
h
N
,
 
I
R
F
U
,
 
S
a
c
l
a
y
C
O
N
T
E
X
T
 
O
F
 
T
H
E
 
T
H
E
S
I
S
M. Rapala, IRFU/DPhN/LERN
Page 59
May 30, 2017
C
E
A
,
 
D
E
N
,
 
D
E
R
,
 
C
a
d
a
r
a
c
h
e
C
E
A
,
 
D
P
h
N
,
 
I
R
F
U
,
 
S
a
c
l
a
y
Simulates fission fragments de-excitation
F
I
F
R
E
L
I
N
 
M
O
N
T
E
-
C
A
R
L
O
 
S
I
M
U
L
A
T
I
O
N
 
C
O
D
E
M. Rapala, IRFU/DPhN/LERN
Page 60
May 30, 2017
Data obtained from the EXILL experiment
 
M. Rapala, IRFU/DPhN/LERN
Page 61
May 30, 2017
Problems with analysis and solutions
Peak shape
Not a simple Gaussian
S
P
E
C
T
R
A
 
F
I
T
T
I
N
G
 
P
R
O
B
L
E
M
S
M. Rapala, IRFU/DPhN/LERN
Page 62
May 30, 2017
S
P
E
C
T
R
A
 
F
I
T
T
I
N
G
 
P
R
O
B
L
E
M
S
 
-
 
P
E
A
K
 
S
H
A
P
E
M. Rapala, IRFU/DPhN/LERN
Page 63
May 30, 2017
Simple Gaussian
data
fit function
integrated over
the bin
fit function
S
P
E
C
T
R
A
 
F
I
T
T
I
N
G
 
P
R
O
B
L
E
M
S
 
-
 
P
E
A
K
 
S
H
A
P
E
M. Rapala, IRFU/DPhN/LERN
Page 64
May 30, 2017
Simple Gaussian
data
fit function
integrated over
the bin
fit function
Bad resolution
Sum of all detectors
Sum of all runs
Compton – tails
91
Zr(n,
), 
92
Zr(n,
)
A
DJUSTED
 
ON
 
92
Z
R
 
AND
 
93
Z
R
CLEAN
 
PEAKS
Fit function
S
UM
 
OF
 3 G
AUSSIANS
Same center
C
OMPTON
TAILS
E
X
I
L
L
 
R
E
S
O
L
U
T
I
O
N
M. Rapala, IRFU/DPhN/LERN
Page 65
May 30, 2017
S
P
E
C
T
R
A
 
F
I
T
T
I
N
G
 
P
R
O
B
L
E
M
S
 
-
 
P
E
A
K
 
S
H
A
P
E
M. Rapala, IRFU/DPhN/LERN
Page 66
May 30, 2017
Triple Gaussian + Compton tails
Peak shape
Not a simple Gaussian
Gating with subtracted background
Choosing correct background
S
P
E
C
T
R
A
 
F
I
T
T
I
N
G
 
P
R
O
B
L
E
M
S
M. Rapala, IRFU/DPhN/LERN
Page 67
May 30, 2017
Gating with subtracted background
Gate background close to the peak
S
P
E
C
T
R
A
 
F
I
T
T
I
N
G
 
P
R
O
B
L
E
M
S
 
-
 
B
A
C
K
G
R
O
U
N
D
M. Rapala, IRFU/DPhN/LERN
Page 68
May 30, 2017
401.6keV
Gate 1
Background
Gating with subtracted background
Gate background close to the peak
S
P
E
C
T
R
A
 
F
I
T
T
I
N
G
 
P
R
O
B
L
E
M
S
 
-
 
B
A
C
K
G
R
O
U
N
D
M. Rapala, IRFU/DPhN/LERN
Page 69
May 30, 2017
199.2keV
Gate 2
Background
Gating with subtracted background
Choosing correct background
S
P
E
C
T
R
A
 
F
I
T
T
I
N
G
 
P
R
O
B
L
E
M
S
 
-
 
B
A
C
K
G
R
O
U
N
D
M. Rapala, IRFU/DPhN/LERN
Page 70
May 30, 2017
Gating with subtracted background
Choosing correct background
S
P
E
C
T
R
A
 
F
I
T
T
I
N
G
 
P
R
O
B
L
E
M
S
 
-
 
B
A
C
K
G
R
O
U
N
D
M. Rapala, IRFU/DPhN/LERN
Page 71
May 30, 2017
330.7keV
Baseline depends on the placing the background
Up to 10% difference depending on the background choice
S
P
E
C
T
R
A
 
F
I
T
T
I
N
G
 
P
R
O
B
L
E
M
S
 
-
 
B
A
C
K
G
R
O
U
N
D
M. Rapala, IRFU/DPhN/LERN
Page 72
May 30, 2017
330.7keV
A
N
A
L
Y
S
I
S
 
P
R
O
C
E
D
U
R
E
M. Rapala, IRFU/DPhN/LERN
Page 73
Redefinition of background treatment
No background subtraction 
→ gate scanning needed
May 30, 2017
A
N
A
L
Y
S
I
S
 
P
R
O
C
E
D
U
R
E
M. Rapala, IRFU/DPhN/LERN
Page 74
May 30, 2017
Horizontal Gates
Vertical Gates
Diagonal Gates
Fitted background
No contamination
N = N
m
 - B
H
 - B
V
 + B
D
Contamination only in
horizontal gate
N = N
H
 - B
V
 + B
D
D
A
T
A
 
P
R
E
P
R
O
C
E
S
S
I
N
G
 
-
 
T
R
I
P
L
E
-
 
C
O
I
N
C
I
D
E
N
C
E
M. Rapala, IRFU/DPhN/LERN
Page 75
May 30, 2017
Three-dimensional histogram
γγγ
-cube
Time shift correction for all Ge crystals
Energy calibration of all Ge crystals (run after run)
Coincidence time window
Fixed to 200ns
Cube created in Poland at Warsaw University
Time needed: 6 to 12 months
D
A
T
A
 
P
R
E
P
R
O
C
E
S
S
I
N
G
 
-
 
T
R
I
P
L
E
-
 
C
O
I
N
C
I
D
E
N
C
E
M. Rapala, IRFU/DPhN/LERN
Page 76
May 30, 2017
Three-dimensional histogram
γγγ
-cube
Time shift correction for all Ge crystals
Energy calibration of all Ge crystals (run after run)
Coincidence time window
Fixed to 200ns
Cube created in Poland at Warsaw University
Time needed: 6 to 12 months
Dedicated analysis software
Choosing gates
Fitting spectra in triple-
coincidence
No access to the source code
Gamma-ray cascade
P
R
E
L
I
M
I
N
A
R
Y
 
R
E
S
U
L
T
S
M. Rapala, IRFU/DPhN/LERN
Page 77
May 30, 2017
G
a
m
m
a
-
r
a
y
 
c
a
s
c
a
d
e
 
i
n
 
1
4
2
B
a
a
c
c
o
r
d
i
n
g
 
t
o
 
E
X
I
L
L
 
d
a
t
a
G
a
m
m
a
-
r
a
y
 
c
a
s
c
a
d
e
 
i
n
 
1
4
2
B
a
a
c
c
o
r
d
i
n
g
 
t
o
 
2
4
8
C
m
 
d
a
t
a
Urban et al., Nucl. Phys A 613 (1997) 107
T. Materna et al., accepted for publ. In EPJ Web of Conferences (2017)
Gamma-ray cascade
Transition intensity
values very close
especially in ground
state band
P
R
E
L
I
M
I
N
A
R
Y
 
R
E
S
U
L
T
S
M. Rapala, IRFU/DPhN/LERN
Page 78
May 30, 2017
Gamma-ray cascade
Transition intensity
values very close
especially in ground
state band
Probably initial spins
of the primary fission
fragments in both
systems are similar
P
R
E
L
I
M
I
N
A
R
Y
 
R
E
S
U
L
T
S
M. Rapala, IRFU/DPhN/LERN
Page 79
May 30, 2017
P
R
E
L
I
M
I
N
A
R
Y
 
R
E
S
U
L
T
S
M. Rapala, IRFU/DPhN/LERN
Page 80
May 30, 2017
G
a
m
m
a
-
r
a
y
 
c
a
s
c
a
d
e
 
i
n
 
9
2
K
r
 
a
c
c
o
r
d
i
n
g
 
t
o
 
E
X
I
L
L
 
d
a
t
a
(in coincidence with 
142
Ba)
T. Materna et al., accepted for publ. In EPJ Web of Conferences (2017)
P
R
E
L
I
M
I
N
A
R
Y
 
R
E
S
U
L
T
S
M. Rapala, IRFU/DPhN/LERN
Page 81
May 30, 2017
G
a
m
m
a
-
r
a
y
 
c
a
s
c
a
d
e
 
i
n
 
9
2
K
r
 
a
c
c
o
r
d
i
n
g
 
t
o
 
E
X
I
L
L
 
d
a
t
a
(in coincidence with 
142
Ba)
G
a
m
m
a
-
r
a
y
 
c
a
s
c
a
d
e
 
i
n
 
9
2
K
r
 
a
c
c
o
r
d
i
n
g
 
t
o
 
F
I
F
R
E
L
I
N
(old RIPL-3 version, without low intensity transitions, in coincidence with 
142
Ba)
T. Materna et al., accepted for publ. In EPJ Web of Conferences (2017)
P
R
E
L
I
M
I
N
A
R
Y
 
R
E
S
U
L
T
S
M. Rapala, IRFU/DPhN/LERN
Page 82
May 30, 2017
G
a
m
m
a
-
r
a
y
 
c
a
s
c
a
d
e
 
i
n
 
9
2
K
r
 
a
c
c
o
r
d
i
n
g
 
t
o
 
E
X
I
L
L
 
d
a
t
a
(in coincidence with 
142
Ba)
G
a
m
m
a
-
r
a
y
 
c
a
s
c
a
d
e
 
i
n
 
9
2
K
r
 
a
c
c
o
r
d
i
n
g
 
t
o
 
F
I
F
R
E
L
I
N
(new RIPL-3 version, without low intensity transitions,
in coincidence with 
142
Ba)
RIPL-3 update
Strong dependence of the
FIFRELIN simulation output on
spin values
T. Materna et al., accepted for publ. In EPJ Web of Conferences (2017)
T. Materna et al., accepted for publ. In EPJ Web of Conferences (2017)
CEA Saclay:
Analysis of other fission fragment pairs
Comparison to 
248
Cm and 
252
Cf experimental data
Comparison to FIFRELIN simulation results
P
H
D
 
O
U
T
L
O
O
K
M. Rapala, IRFU/DPhN/LERN
Page 83
May 30, 2017
CEA Saclay:
Analysis of other fission fragment pairs
Comparison to 
248
Cm and 
252
Cf experimental data
Comparison to FIFRELIN simulation results
CEA Cadarache:
Comparison of gathered experimental data results to
FIFRELIN simulation results
Evaluation and improvement of the models
implemented in the code
P
H
D
 
O
U
T
L
O
O
K
M. Rapala, IRFU/DPhN/LERN
Page 84
May 30, 2017
FIPPS experiment
At ILL in Grenoble (the same beamline as EXILL)
Phase I started operation in January 2017
HPGe array – 8 detectors
O
U
T
L
O
O
K
M. Rapala, IRFU/DPhN/LERN
Page 85
May 30, 2017
 
Institut Laue-Langevin,
https://www.ill.eu/instruments-support/instruments-
groups/instruments/fipps/description/fipps-hpge-array/ (2017)
FIPPS experiment
At ILL in Grenoble (the same beamline as EXILL)
Phase I started operation in January 2017
HPGe array – 8 detectors
O
U
T
L
O
O
K
M. Rapala, IRFU/DPhN/LERN
Page 86
May 30, 2017
Plans:
Active target (fission trigger)
Anti-Compton shield
Outcomes:
Lower background
Less contaminants
Better energy resolution
Institut Laue-Langevin,
https://www.ill.eu/instruments-support/instruments-
groups/instruments/fipps/description/fipps-hpge-array/ (2017)
Slide Note
Embed
Share

Delve into the nuclear fission process through prompt gamma-ray spectrometry, exploring motivations, experimental data, and preliminary results. Understand the gamma heating process in nuclear reactors and its significance in reactor safety. Contextualize the study within Generation III+ and IV reactors, aiming for higher accuracy and safety through precise simulations and code improvements.

  • Nuclear Fission
  • Gamma-Ray Spectrometry
  • Reactor Safety
  • Generation III+
  • Code Improvements

Uploaded on Sep 18, 2024 | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. Download presentation by click this link. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

E N D

Presentation Transcript


  1. Study of the nuclear fission process by prompt gamma-ray spectrometry MICHA R PA A PHENIICS Fest, Orsay, 30 May 2017

  2. PRESENTATION OUTLINE Motivations Experimental data EXILL EXPERIMENT Preliminary results BA KR Conclusions M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 2

  3. Motivations M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 3

  4. GAMMA HEATING PROCESS IN A NUCLEAR REACTOR Result of gamma-ray energy deposition HTMR Asia Development Limited, http://www.htmr-asia.com/en/product.php?id=27 (2014) M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 4

  5. GAMMA HEATING PROCESS IN A NUCLEAR REACTOR Result of gamma-ray energy deposition HTMR Asia Development Limited, http://www.htmr-asia.com/en/product.php?id=27 (2014) Areva , UK-EPR, Fundamental safety overview Vol. 1, Chapter A, Page 63 S. Sen et al., Nuclear Engineering and Design Vol. 293, Pages 323-329 (2015) M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 5

  6. GAMMA HEATING PROCESS IN A NUCLEAR REACTOR Almost 100% of total heating in the reflector A-C. Colombier et al., EPJ Web of Conferences 42, 04001 (2013) M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 6

  7. CONTEXT OF THE STUDY Generation III+ and IV reactors More accurate simulation Higher safety Gamma heating process More precise simulation M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 7

  8. CONTEXT OF THE STUDY Generation III+ and IV reactors More accurate simulation Higher safety Gamma heating process More precise simulation Fission fragment deexcitation simulation code Improvement of implemented models Fission Prompt gamma-ray cascade M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 8

  9. FISSION PROCESS What we want to study: FISSION PROCESS PROMPT GAMMA-RAY CASCADE IN FISSION FRAGMENTS Courtesy of J.F. Lema tre, SPhN, IRFU, DRF, CEA Saclay M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 9

  10. FISSION FRAGMENT DEEXCITATION The continuum The part partially completed from the models The experimental nuclear levels O. Litaize et al., ND-2016, Bruges M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 10

  11. PROMPT GAMMA-RAY CASCADE Main questions concerning de-excitation process: What happens after the scission point? How is the excitation energy shared between fragments? the two What distributions? Are they correlated? are the initial spin What generates fragment? is the high process spin that the in M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 11

  12. FIFRELIN MONTE-CARLO SIMULATION CODE Simulates fission fragments de-excitation Observables M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 12

  13. Experimental data M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 13

  14. EXOGAM EXPERIMENT AT ILL - EXILL Array of Ge-detectors around a fissile target in a intense cold neutron beam 15 DAYS WITH235U (575 G/CM2) + SN/ZR 5 DAYS WITH235U (675 G/CM2) + BE 15 DAYS WITH241PU (300 G/CM2) + BE 8 EXOGAM clovers + 2 ILL clovers + 6 GASP Ge + BGO shielding WITHOUT LABR3DETECTORS Analysis of 235U data M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 14

  15. DATA ANALYSIS Triple- coincidence Analysis software CHOOSING GATES Selecting fragments fission FITTING TRIPLE- COINCIDENCE SPECTRA IN CALCULATING INTENSITY GAMMA-RAY TRANSITION AND ANTICIPATION THE UNCERTAINTY PROPAGATION RELATIVE OF THE OF M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 15

  16. Triple- coincidence in practice M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 16

  17. RAW DATA M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 17

  18. GATES SELECTION 92Kr 142Ba Rz ca-Urban et al., Eur. Phys. J. A 9 (2000) 165 Urban et al., Nucl. Phys A 613 (1997) 107 M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 18

  19. GATES SELECTION 92Kr 142Ba Rz ca-Urban et al., Eur. Phys. J. A 9 (2000) 165 Urban et al., Nucl. Phys A 613 (1997) 107 M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 19

  20. SIMPLE COINCIDENCE OUTCOME Cleaner spectrum STILL HIGH BACKGROUND AND MANY CONTAMINANTS 769.0keV M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 20

  21. TRIPLE- COINCIDENCE OUTCOME Clean spectrum REDUCED BACKGROUND CLEARLY VISIBLE PEAKS 359.5keV 769.0keV M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 21

  22. PEAK IDENTIFICATION 92Kr 142Ba M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 22

  23. Preliminary Results M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 23

  24. PRELIMINARY RESULTS Gamma-ray cascade Gamma-ray cascade in 142Ba according to FIFRELIN T. Materna et al., accepted for publ. In EPJ Web of Conferences (2017) M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 24

  25. PRELIMINARY RESULTS Gamma-ray cascade Gamma-ray cascade in 142Ba according to FIFRELIN T. Materna et al., accepted for publ. In EPJ Web of Conferences (2017) Gamma-ray cascade in 142Ba according to EXILL data T. Materna et al., accepted for publ. In EPJ Web of Conferences (2017) M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 25

  26. PRELIMINARY RESULTS Gamma-ray cascade I E (keV) J1 J2 EXILL* FIFR.** Ratio(**/*) 1.00 (3) 359.6 2+ 0+ 100 (3) 100.0 (1) 475.2 4+ 2+ 80 (2) 91.4 (2) 1.14 (3) 631.2 6+ 4+ 42 (2) 66.3 (1) 1.58 (8) 693.4 8+ 6+ 12 (1) 26.0 (1) 2.2 (2) 766.5 10+ 8+ 2.4 (7) 3.60 (3) 1.5 (4) 706.8 5- 4+ 10 (1) 10.17 (5) 1.0 (1) 486.7 7- 6+ 8 (1) 15.60 (6) 1.9 (2) 354.4 9- 8+ 4.4 (5) 8.40 (4) 1.9 (2) 561.1 9- 7- 4.0 (5) 7.52 (4) 1.9 (2) 640.1 11- 9- 2 (1) 6.22 (3) 3 (2) 380.9 8+ 6+ 4.0 (6) 5.06 (3) 1.3 (2) 585.6 10+ 8+ 4 (1) 5.66 (3) 1.4 (4) Gamma-ray cascade in 142Ba according to FIFRELIN T. Materna et al., accepted for publ. In EPJ Web of Conferences (2017) M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 26

  27. PRELIMINARY RESULTS Gamma-ray cascade GOOD AGREEMENT LOW SPIN TRANSITIONS FOR I E (keV) J1 J2 EXILL* FIFR.** Ratio(**/*) 1.00 (3) 359.6 2+ 0+ 100 (3) 100.0 (1) HIGH OVERESTIMATED FIFRELIN CODE SPIN TRANSITIONS 475.2 4+ 2+ 80 (2) 91.4 (2) 1.14 (3) BY 631.2 6+ 4+ 42 (2) 66.3 (1) 1.58 (8) 693.4 8+ 6+ 12 (1) 26.0 (1) 2.2 (2) 766.5 10+ 8+ 2.4 (7) 3.60 (3) 1.5 (4) 706.8 5- 4+ 10 (1) 10.17 (5) 1.0 (1) 486.7 7- 6+ 8 (1) 15.60 (6) 1.9 (2) 354.4 9- 8+ 4.4 (5) 8.40 (4) 1.9 (2) 561.1 9- 7- 4.0 (5) 7.52 (4) 1.9 (2) 640.1 11- 9- 2 (1) 6.22 (3) 3 (2) 380.9 8+ 6+ 4.0 (6) 5.06 (3) 1.3 (2) 585.6 10+ 8+ 4 (1) 5.66 (3) 1.4 (4) M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 27

  28. PRELIMINARY RESULTS Gamma-ray cascade GOOD AGREEMENT LOW SPIN TRANSITIONS FOR I E (keV) J1 J2 EXILL* FIFR.** Ratio(**/*) 1.00 (3) 359.6 2+ 0+ 100 (3) 100.0 (1) HIGH OVERESTIMATED FIFRELIN CODE SPIN TRANSITIONS 475.2 4+ 2+ 80 (2) 91.4 (2) 1.14 (3) BY 631.2 6+ 4+ 42 (2) 66.3 (1) 1.58 (8) 693.4 8+ 6+ 12 (1) 26.0 (1) 2.2 (2) 766.5 10+ 8+ 2.4 (7) 3.60 (3) 1.5 (4) PROBABLY ESTIMATION VALUE FRAGMENT DISTRIBUTION WRONG A MEAN FISSION SPIN 706.8 5- 4+ 10 (1) 10.17 (5) 1.0 (1) OF THE 486.7 7- 6+ 8 (1) 15.60 (6) 1.9 (2) OF 354.4 9- 8+ 4.4 (5) 8.40 (4) 1.9 (2) 561.1 9- 7- 4.0 (5) 7.52 (4) 1.9 (2) 640.1 11- 9- 2 (1) 6.22 (3) 3 (2) 380.9 8+ 6+ 4.0 (6) 5.06 (3) 1.3 (2) 585.6 10+ 8+ 4 (1) 5.66 (3) 1.4 (4) M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 28

  29. PRELIMINARY RESULTS Dependence on a complementary fragment (neutron evaporation) 61+ 4+ 81+ 61+ 7- 61+ 5- 4+ FIFRELIN simulated transition intensities in 142Ba M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 29

  30. PRELIMINARY RESULTS Dependence on a complementary fragment (neutron evaporation) 61+ 4+ 61+ 4+ 5- 4+ 81+ 61+ 81+ 61+ 7- 61+ 5- 4+ 7- 61+ EXILL data transition intensities in 142Ba FIFRELIN simulated transition intensities in 142Ba M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 30

  31. PRELIMINARY RESULTS 4 neutrons In FIFRELIN initial spin is constant 3 neutrons Eex [MeV] 2 neutrons 1 neutron 0 neutrons J [ ] M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 31

  32. PRELIMINARY RESULTS 4 neutrons In FIFRELIN initial spin is constant 3 neutrons Neutron evaporation follows the mean value of the level density distribution Eex [MeV] 2 neutrons 1 neutron 0 neutrons J [ ] M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 32

  33. PRELIMINARY RESULTS 4 neutrons In FIFRELIN initial spin is constant 3 neutrons Neutron evaporation follows the mean value of the level density distribution Eex [MeV] 2 neutrons With neutrons transitions are produced more evaporated high 1 neutron less spin 0 neutrons J [ ] M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 33

  34. Conclusions M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 34

  35. CONCLUSIONS Systematic study of the prompt gamma-ray cascades of the fission fragments TRIPLE- COINCIDENCE TECHNIQUE ANALYSIS MADE ON A FEW (THE MOST ABUNDANT) FISSION FRAGMENT PAIRS RESULTS WILL HELP TO IMPROVE SIMULATIONS OF GAMMA HEATING IN NUCLEAR REACTORS Benchmarking the MC simulation code FIFRELIN COMPARISON TO FIFRELIN SIMULATION RESULTS SOME EFFECTS NEED FURTHER INVESTIGATION M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 35

  36. COLLABORATION T. Materna1, A. Letourneau1, A. Marchix1, O. Litaize2, O. S rot2, D. Regnier2, W. Urban3, A. Blanc4, M. Jentschel4, U. K ster4, P. Mutti4, T. Soldner4, G. Simpson5, C lin A. Ur6, and G. de France7 1 Irfu, Universit Paris-Saclay, Gif-sur-Yvette, France 2 CEA, DEN, DER, Cadarache, Saint-Paul-lez-Durance, France 3 Faculty of Physics, University of Warsaw, Warsaw, Poland 4 Institut Laue-Langevin, Grenoble, France 5 LPSC, CNRS/IN2P3, Grenoble, France 6INFN, Legnaro, Italy 7 GANIL, Caen, France M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 36

  37. PHD AIMS CEA Saclay DATA ANALYSIS TECHNIQUE DEVELOPMENT DATA ANALYSIS GATHERING INFORMATION ABOUT GAMMA-RAY CASCADE COMPARING EXPERIMENTAL DATA WITH SIMULATION RESULTS CEA Cadarache COMPARING EXPERIMENTAL DATA WITH SIMULATION RESULTS TESTING DIFFERENT PARAMETER SETUPS IMPROVING SIMULATION CODE M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 38

  38. FITTING PROBLEMS Too high uncertainty TOO HIGH STATISTICAL ERROR Peak shape too complicated PROBLEMS WITH DETECTORS ENERGY RESOLUTION AND TAILS OUR PEAK LOOKS LIKE TRIPLE GAUSSIAN + COMPTON ADDITIONAL PEAKS NEEDED TO REPRODUCE THE CORRECT SHAPE Wrong volume of the peaks CONTAMINANTS INCLUDED IN THE GATES M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 39

  39. DETECTION SYSTEM CALIBRATION Europium source data used for calibration 152Eu 152Gd or 152Sm Three types of detectors with different performance M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 40

  40. DETECTION SYSTEM CALIBRATION Europium source data used for calibration 152Eu 152Gd or 152Sm Three types of detectors with different performance Total coincidence efficiency formula simplification M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 41

  41. DETECTION SYSTEM CALIBRATION Europium source data used for calibration 152Eu 152Gd or 152Sm Three types of detectors with different performance Total coincidence efficiency formula simplification M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 42

  42. DETECTION SYSTEM CALIBRATION Europium source data used for calibration 152Eu 152Gd or 152Sm Three types of detectors with different performance Total coincidence efficiency formula simplification DIFFERENCE LOWER THAN 2% IN RANGE BETWEEN 100KEV TO 1.5MEV M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 43

  43. DETECTION SYSTEM CALIBRATION Europium source data used for calibration 152Eu 152Gd or 152Sm Three types of detectors with different performance Total coincidence efficiency formula simplification Correction of true coincidence effect Efficiency [%] Efficiency [%] Energy [keV] Energy [keV] M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 44

  44. EXILL RESOLUTION 91Zr(n, ) 92ZR PEAK AT 1405 KEV FWHM EQUAL TO 3.7 KEV CHI2/NDF EQUAL TO 1.7 M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 45

  45. SPECTRA FITTING PROBLEMS Peak shape NOT A SIMPLE GAUSSIAN Gating with subtracted background CHOOSING CORRECT BACKGROUND Peak/Background ratio GATES WIDTH Contaminants in the gates GATES WIDTH M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 46

  46. SPECTRA FITTING PROBLEMS - PEAK/BACKGROUND Better value of the peak/background ratio 2 bins gate width 1 bin gate width M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 47

  47. SPECTRA FITTING PROBLEMS - CONTAMINATION Better visibility of contaminants More precise contamination positioning More precise results Lower uncertainty 2 bins gate width 1 bin gate width M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 48

  48. PRELIMINARY RESULTS Dependence on a complementary fragment (neutron evaporation) EFFECT CAUSED BY DEPENDENCE BETWEEN EXCITATION ENERGY AND LEVEL DENSITY 61+ 4+ 81+ 61+ 7- 61+ 5- 4+ FIFRELIN simulated transition intensities in 142Ba M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 49

  49. PRELIMINARY RESULTS Dependence on a complementary fragment (neutron evaporation) EFFECT CAUSED BY DEPENDENCE BETWEEN EXCITATION ENERGY AND LEVEL DENSITY 61+ 4+ MORE EVAPORATED NEUTRONS 81+ 61+ LOWER EXCITATION ENERGY OF THE FISSION FRAGMENTS AFTER NEUTRON EVAPORATION 7- 61+ 5- 4+ FIFRELIN simulated transition intensities in 142Ba LOWER PROBABILITY OF HIGH-SPIN TRANSITION PRODUCTION M. Rapala, IRFU/DPhN/LERN May 30, 2017 Page 50

Related


More Related Content

giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#