16s rrna gene - PowerPoint PPT Presentation


Overview of Gene Transfer Methods in Molecular Biology

Explore various physical and chemical methods used for gene transfer, including electroporation, particle bombardment, microinjection, ultrasound, and bacterial transformation. Learn how DNA enters the nucleus and the role of retroviruses in gene transfer efficiency. Understand the process of RNA co

0 views • 17 slides


Gene Therapy and Genome Editing Technology

This article provides insights into the status, regulatory considerations, and delivery methods of gene therapy and genome editing technologies. It discusses approved gene therapies in the US, human genome editing in clinical applications, and the regulatory authority of the FDA over gene therapy. T

2 views • 27 slides



Understanding Viral Vectors in Gene Delivery: Safety and Considerations

Exploring the mechanisms of gene delivery via viral vectors, this content delves into the basics of viral structure, infection, and replication. It discusses common viral vector systems like Adenoviral and Lentiviral vectors, highlighting safety considerations and the production processes involved.

1 views • 19 slides


Understanding Gene Editing with CRISPR/Cas9 Technology

Explore the fascinating world of CRISPR/Cas9 gene editing technology through sessions led by experts like Roy Campbell and Howard Robinson. Delve into the working of gene editing, the CRISPR system, and the role of Cas9 enzyme. Learn about CRISPR's origin in prokaryotic organisms and its potential f

0 views • 33 slides


Medicaid and CHIP Coverage of New Treatments for Sickle Cell Disease

This communication highlights the Medicaid and Children's Health Insurance Program (CHIP) coverage of new treatments for Sickle Cell Disease (SCD), focusing on the approval of milestone gene therapies, Casgevy and Lyfgenia. It discusses the commitment of CMS to improving healthcare access, quality,

2 views • 13 slides


Understanding Gene Expression Regulation in Prokaryotes and Eukaryotes

Gene expression is a crucial process that leads to the production of functional gene products like RNA and proteins. This article explores the regulation of gene expression in both prokaryotes and eukaryotes, covering the importance of regulating gene expression, types of regulation elements, specif

5 views • 22 slides


Bioinformatics

Bioinformatics involves analyzing biological sequences through sequence alignment to uncover functional, structural, and evolutionary insights. This process helps in tasks like annotation of sequences, modeling protein structures, and analyzing gene expression experiments. Basic steps include compar

0 views • 6 slides


The Future of Heart Disease Treatment_ How Gene Editing Could Change Everything

Can gene editing cure heart disease? For many years, this has reigned as the leading cause of death worldwide, being responsible for about 32% of all fatalities across the globe. However, researchers are now experimenting with a field of science that

1 views • 5 slides


Understanding Gene Translation: From RNA to Protein

Gene translation from RNA to protein involves the specific binding of transfer RNA molecules to messenger RNA codons, enabling the translation of nucleotide sequences into amino acids. Each amino acid is attached to a specific tRNA through activating enzymes, and the anticodon on tRNA pairs with the

0 views • 4 slides


Understanding the Basics of Biology - Introduction to DNA, Genes, and Proteins

Explore the fundamental concepts of biology, including the human genome, protein coding genes, central dogma of biology, gene transcription, DNA vs. RNA, and more. Discover how DNA serves as the blueprint for life, how genes are translated into proteins, and the essential processes involved in gene

0 views • 57 slides


Understanding Artefacts and Biases in Gene Set Analysis

Gene set enrichment tests help identify functional gene sets enriched in hit lists compared to background sets. Various biases (technical, biological, statistical) can lead to incorrect conclusions in data analysis, emphasizing the importance of recognizing and addressing them. Technical biases like

0 views • 29 slides


Exploring Genetics and Genomics in Integrative Biology

Delve into the world of genetics and genomics through the lens of integrative biology, investigating the differences between cell types, the rationale for gene expression profiling, and the analysis of differential gene expression in various diseases. Uncover the significance of gene ontology, co-ex

0 views • 22 slides


Understanding Evolutionary Mechanisms: Natural Selection, Genetic Drift, and Gene Flow

Exploring the forces behind evolutionary change, this content delves into natural selection, genetic drift, and gene flow. Examples such as the bottleneck effect, founder effect, and Amish population polydactylism are presented to illustrate how these mechanisms shape genetic diversity. The impact o

0 views • 14 slides


Gene Prediction: Similarity-Based Approaches in Bioinformatics

Gene prediction in bioinformatics involves predicting gene locations in a genome using different approaches like statistical methods and similarity-based approaches. The similarity-based approach uses known genes as a template to predict unknown genes in newly sequenced DNA fragments. This method in

1 views • 40 slides


Understanding Epigenetics: DNA Methylation and Histone Modification

Epigenetics involves modifications that impact gene expression without altering DNA sequences, playing a crucial role in the transition from genotype to phenotype. This includes DNA methylation, histone modification, and microRNAs. DNA methylation, controlled by DNMT enzymes, can lead to either gene

5 views • 12 slides


Human Insulin Gene Expression and Production

The process of cloning and expressing the human insulin gene has revolutionized the production of insulin for treating diabetes. By using genetically engineered bacteria, the human insulin gene is inserted, expressed, and purified to create insulin for therapeutic use. This innovation has overcome c

0 views • 20 slides


Understanding Gene Mutations in Molecular Biology

Gene mutations play a significant role in molecular biology, leading to alterations in DNA sequences that can impact offspring. These mutations can arise spontaneously or be induced by various factors, such as mutagens. Understanding gene mutations is crucial for comprehending the genetic basis of c

2 views • 27 slides


Understanding the Cre-Lox System for Genome Manipulation in Mice

The Cre-Lox system, a powerful tool in genetic engineering, employs Cre recombinase to recombine specific DNA sequences (LoxP sites), allowing for precise genetic modifications such as deletions, inversions, and translocations. This system enables conditional gene expression, turning on or off trans

4 views • 9 slides


Co-Developing Risk Assessments in Gene Drive

Gene drive technology is a cutting-edge approach aimed at combating malaria by spreading genetically modified genes in mosquito populations. This technology has the potential to protect endangered species and conserve nature. However, successful implementation requires complex collaborations, risk a

2 views • 16 slides


Understanding Epigenetics: DNA Methylation and Histone Modification

Epigenetics refers to changes in gene expression without altering the DNA sequence. This involves processes like DNA methylation, histone modification, and microRNAs. DNA methylation is controlled by DNA methyltransferase enzymes and plays crucial roles in gene activation and silencing. Histone modi

0 views • 13 slides


Understanding Gene Duplication, Mutation, and Read Mapping in Molecular Evolution

This presentation delves into the intricate concepts of gene duplication, DNA mutation, and read mapping in the context of molecular evolution. It explains the various types of mutations, the significance of gene duplication in generating new genetic material, and the process of read mapping to alig

0 views • 19 slides


Understanding Protein Synthesis Process in Cells

Explore the key terms related to protein synthesis: RNA, mRNA, rRNA, tRNA, protein synthesis, transcription, translation, amino acid, codon, and anticodon. Understand the intricate process of protein formation through transcription and translation steps.

0 views • 11 slides


Understanding Gene Regulation and Control of Gene Expression

This comprehensive content delves into the intricate mechanisms of gene regulation and control of gene expression. It covers topics such as transcriptional regulation, bacterial genes classification, and the role of regulatory proteins. Explore how genes are regulated at transcription, translation,

0 views • 17 slides


Understanding Gene Expression in Biological Sciences Course

Explore the dynamic world of gene expression with the Chunky and Chips Gene Expression Group at the University of Notre Dame. Dive into topics like transcription, translation, and cellular events influencing gene expression. Delve into real-world scenarios and gain insights into the cellular level b

0 views • 20 slides


Exploring the Effects of Gene Doping with PGC1a via Ormosil on Fitness in Mice

Investigating the potential of gene doping using PGC1a via Ormosil to enhance fitness outcomes in mice compared to exercise. Ormosil, a non-viral vector, is utilized for gene delivery, offering advantages in safety. Mice are divided into groups to receive treatment, exercise on treadmills, or remain

3 views • 8 slides


Comprehensive Assessment of a Pathogenic CNV in a 2-Year-Old Male with Developmental Delay and Seizures

In this case study, a 2-year-old male presenting with developmental delay and seizures was evaluated for a CNV at the 12p13.1p12.3 region. The CNV was found to overlap with the GRIN2B gene, a known haploinsufficient gene associated with developmental disorders. Despite potential additional scoring c

0 views • 17 slides


Exploring Biomedical Gene Dosage Compensation in Trisomy 21

This instructional material focuses on teaching gene dosage compensation in the context of addressing the inactivation of one copy of Chromosome 21 in trisomy 21. The activity is designed for courses in Molecular Gene Regulation and Genetics, aiming to enhance students' understanding through hands-o

0 views • 19 slides


Exploring Evolutionary Mechanisms: Genetic Drift, Gene Flow, Mutation, and Recombination

Delve into the effects of evolutionary mechanisms such as genetic drift, gene flow, mutation, and recombination in populations. Understand how changes in allele frequencies occur due to various factors like natural disasters and the bottleneck effect, impacting the gene pool and future generations.

1 views • 32 slides


Understanding Epistasis: Genetic Interactions and Their Implications

Epistasis is a phenomenon where the phenotypic expression of one gene is influenced by interactions with another gene. This concept, first introduced in 1909, plays a crucial role in genetics, affecting various traits and evolutionary processes. The difference between dominance and epistasis lies in

0 views • 41 slides


Understanding Transcription: The Initial Steps in Gene Expression

Gene expression involves two crucial phases - transcription and translation. Transcription, the first step, is the process where RNA is synthesized from DNA with the help of RNA polymerase. It begins with initiation, where the enzyme recognizes the promoter region and forms a complex with the DNA, m

0 views • 33 slides


Understanding Transposon Insertion Orientation and Its Impact on Gene Expression

This detailed guide explores the orientation of transposon insertions relative to their inherent asymmetry, like the P-element’s 5’ and 3’ ends, and how it influences constructs for driving ectopic gene expression. Using FlyBase resources, it explains the significance of orientation in constru

0 views • 5 slides


Evaluation of Maternally Inherited 3q26.32 Duplication in a 6-Year-Old Male with Autism

Maternal inheritance of a 3q26.32 duplication in a 6-year-old male with autism was assessed using the GAIN scoring metric. The duplication involves the TBL1XR1 gene and was found to fully overlap with a known haploinsufficient gene. The genomic content evaluation indicates the presence of one protei

0 views • 14 slides


Gene Wiki Jamboree FaceBase Spring Meeting Summary

The Gene Wiki Jamboree FaceBase Spring Meeting in 2010 aimed to create collaboratively-written and community-reviewed review articles for every gene in the human genome and every concept relevant to FaceBase. It highlighted the value of such articles, providing quick summaries and compilations of re

0 views • 13 slides


Understanding Chimeric Artifacts in Bacterial 16S rRNA Gene Sequencing

This content explores the formation of chimeric artifacts during PCR amplification of bacterial 16S rRNA gene segments, leading to challenges in biological sequence clustering and detection. It delves into the complexities of distinguishing between homologous and non-homologous crossover chimeras, p

0 views • 47 slides


Raw Data of Agarose Gel for Human Gene Expression Analysis

This supplementary data includes raw data from agarose gel electrophoresis showing gene expression levels for human SOX17, FOXA2, AFP, ALB, and ACTB in various cellular samples. The gel images depict the expected sizes of amplicons for each gene in different conditions and time points of cell cultur

0 views • 5 slides


Understanding Splice Sites and Splicing Elements in the Inhibitory Dopamine Receptor Gene (D2)

In this project, the focus is on identifying splice sites relevant to the inhibitory dopamine receptor gene (D2). The problem involves finding splicing elements within a specific range of known splice sites in the gene. The data provided includes the D2 gene entry in FASTA format, a database of spli

0 views • 13 slides


Understanding RNA and Protein Synthesis Processes

RNA plays a crucial role in protein synthesis as it carries coded instructions from DNA. There are three types of RNA - mRNA, rRNA, and tRNA, each serving specific functions in the process. The steps of protein synthesis involve transcription, where DNA is copied into mRNA, and translation, where mR

0 views • 11 slides


Insights into RNA Secondary Structure Prediction by Kieran Andrews

Explore RNA secondary structure prediction methods and results, highlighting the role of tRNA and rRNA in cellular RNA composition. The process involves cycling through sequence folds, scoring based on base alignments, and identifying cis-regulatory elements. Results showcase paired bases in tRNA an

0 views • 7 slides


Exploring RNA Secondary Structure Prediction in Bioinformatics

RNA secondary structure prediction is a key concept in bioinformatics, encompassing features like stems, loops, and bulges. This presentation delves into the importance of RNA beyond mRNA, highlighting rRNA, tRNA, and regulatory RNA roles. The canonical base pairs A-U and C-G shape the single-strand

0 views • 20 slides


Understanding Nucleic Acids and RNA Molecules

Nucleic acids are linear polymers composed of nucleotides, with DNA and RNA being the main types. RNA consists of messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA), each playing a crucial role in protein synthesis. mRNA carries genetic information from DNA to ribosomes, tRNA transf

0 views • 8 slides