Write as many TRIG IDENTITIES As you can remember
Explore trigonometric identities, derive them from first principles, rearrange expressions, and prove various trigonometric equations. Enhance your understanding of trigonometry by solving equations and manipulating trig expressions fluently.
Download Presentation

Please find below an Image/Link to download the presentation.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.
You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.
E N D
Presentation Transcript
Starter Write as many TRIG IDENTITIES As you can remember How many can you derive from first principles ?
Starter Rearrange into single expressions: 4 3 1+ x 3 x 1 1 + sin cos cot + cos ec
Think Pair Share Trig: More proofs KUS objectives Be able to derive the trig identities Apply them when appropriate to solve trig equations Find exact values (addition formulas) Apply where appropriate to complete a Proof or show that question manipulate trig expressions fluently
Qs I Nice Cannot be serious! Tricksy 9 Find without a calculator the exact value of 15 tan2 1 Solve for- < cos 8 ec 5 Solve for0 < 360 tan 8 + = 2 28 sec 1 = 3 3 Answer Answer Answer Answer Answer Answer 2 Prove 10 Prove 6 Prove sin + 1 cos A A sin cos ec ec = + = = sec2 sin tan cos sec 1 cos sin A A cos Answer Answer Hint Answer Answer Answer Hint Answer 3 Prove cos 7 Prove 11 Prove x (sec = cos sin ec cos sin + + 2 2 2 2 tan + )(cos cot ) x ec x x + = + sin cos 1 tan 1 cot cot = 2 2 1 2 sec cos x ec x Answer Hint Answer Hint Answer Answer Hint Answer Hint Answer 4 Prove (sin + 8 Prove 12 Prove sin + + 2 cos ) + 1 cos 2 A A + + + 2 1 ( = sin cos ) + = = 2 (sin cos ) 2 1 cos sin sin A A A + 1 ( 2 sin )( 1 cos ) Answer Answer Answer Answer Answer Answer
Qs II Nice Cannot be serious! 21 Prove Tricksy 17 Prove 13 Prove = 2 2 tan cot sin 2 x 2 = + cos sin A A cos 2 A = cot x )(sec ec + cos sin A A (sec cos cos ) ec 1 cos x Answer Answer Hint Answer Answer Answer Hint Answer 14 Prove ( 18 Prove 22 Prove ) 1 1 + 2 2 + 2 tan x sin cos ec cos sin cos sin A A A A = 2 2 = = + + 2 2 2 sec 3 tan x x sin cot 3 2 sin Answer sec 2 A A Answer Answer Answer Answer Answer 19 Prove 23 Prove 15 Prove cot ( ) cot tan + + + tan tan sec + )(cot x cos x x x ecx = 2 2 cot = + = 1 ( sec )( 1 cos ) ecx sec cos ec Answer Answer Answer Answer Answer Answer 24 Prove 16 Prove 20 Prove ( ) ( ) + 2 2 4 4 2 2 tan cot sec tan x x + + 1 sin 1 sin x x cos = cos x 2+ x = + = 2 2 2 sec cos 2 ec 2 sec 1 x 2 4 tan x Answer Answer Answer Answer Answer Answer
Exam Q1 8cosec2x=2/3 Solve for- < = 8 cos 3 ec 28 3 = cos 3 ec 28 24 = = sin 3 6 24 28 7 = 239 3 ... 301 , , 59 , 121 , 419 , 481 , ... = ... 100 , 3 . 79 , 7 . 19 , 7 . 40 , 3 . 139 , 7 . 160 , 3 . ... QED Back to Qs I Back to Qs I
Exam Q2 sinxtanx+cosx=secx + = sin tan cos sec Prove: = tan sin cos cot A 2 + + = ec cos sin A cos sec cos A 2 2 sin tan 1 + sin cos 1 = sin 2 = = 1 = cos 2 = = = 1 cos cos sin sin cos cos = + LHS 2 2 = A 2 2 cos + 2 2 sin cos = 2 2 LHS cos cos cos sin 2 2 2 cos sin A 2 A A A A A A 2 2 2 1 A 1 = LHS 2 1 1 2 2 cos + 2 cos cos 2 A A 1 1 2 2 = sec LHS QED Back to Qs I Back to Qs I
Exam Q3 cosecx-sinx=cotxcosx = cos sin cot cos ec Prove: = tan sin cos cot A 2 + + = ec cos sin A cos sec cos A 2 2 sin tan 1 + sin cos 1 = sin 2 = = 1 = cos 2 = = = 1 sin 1 sin sin = LHS 2 2 sin = A 2 2 2 1 sin = LHS 2 2 cos cos cos sin 2 2 2 cos sin A 2 A A A A A A sin 2 2 2 1 A cos2 2 = 1 1 LHS 2 2 sin + 2 cos cos 2 A A 1 1 2 2 cos = = cos cot cos LHS QED sin Back to Qs I Back to Qs I
Exam Q4 (sinx+cosx)2 +(sinx-cosx)2=2 + + = 2 2 (sin cos ) (sin cos ) 2 Prove: = tan sin cos + + sec = 2 2 sin tan + sin cos 1 = sin 2 = = 1 = cos 2 = = = 1 = sin + sin cos + 2 2 sin + 2 sin cos cos + LHS 2 2 2 2 2 cos = A 2 2 1 cot A 2 cos A ec cos sin A cos = + 2 2 2 2 (sin 2 cos ) LHS cos cos cos sin 2 2 2 cos sin A 2 A A A A A A 2 2 2 1 A = 2 LHS QED 2 1 1 2 2 + 2 cos cos 2 A A 1 1 2 2 Back to Qs I Back to Qs I
Exam Q5 8tan2x+secx=1 + = 2 8 tan sec 1 Solve for 0 < 360 the equation Giving your answers to 1 dp = tan sin cos cot A 2 + + = ec cos sin A cos sec cos A 2 2 sin tan 1 + sin cos 1 = sin 2 = = 1 = cos 2 = = = 1 ) 1 + = 2 (sec 8 sec 1 2 2 = A 2 2 + = 2 8 sec sec 9 0 2 2 cos cos cos sin 2 2 2 cos sin A 2 A A A A A A + ) 1 = 8 ( sec )(sec 9 0 2 2 2 1 A = = sec sec 1 9 2 1 1 8 2 2 + 2 cos cos 2 A A 1 1 = = cos cos 1 2 2 8 9 = = 152 , 7 . 207 3 . 0 Back to Qs I Back to Qs I
Exam Q6 sec2x=cosecx/(cosecx-sinx) sin cos ec ec = sec2 Prove: cos = cos (cos sin ) RHS ec ec 1 1 = 1 sin RHS sin sin 2 1 sin = RHS 2 sin sin 1 sin = RHS sin 1 sin 1 1 = = = 2 sec RHS QED 2 2 1 sin cos Back to Qs I Back to Qs I
Exam Q7 cosx/(1-tanx) + sinx/(1-cotx) = sinx + cosx HINTS cos sin To Prove: + = + sin cos 1 tan 1 cot 1 Make the denominators fractions into and add/subtract together cos sin sin cos = = = = 1 tan ... 1 cot ... sin sin cos cos 2 by a fraction is equivalent to multiplying by the reciprocal = ( ) ( ) a b b a 3 If you want to make denominators the same = + 2 2 4 Difference of squares ( )( ) a b a b a b Next page for answers Back to Qs I Back to Qs I
Exam Q7 cosx/(1-tanx) + sinx/(1-cotx) = sinx + cosx cos sin Prove: + = + sin cos 1 tan 1 cot Make into fractions sin cos cos sin = + LHS cos sin cos cos sin sin sin cos 2 2 cos sin = + LHS ( ) ( ) cos sin ( )( ) Difference of squares + 2 2 cos sin cos sin cos sin = = LHS ( ) ( ) cos sin cos sin = cos + sin QED Back to Qs I Back to Qs I
Exam Q8 (1+sinx+cosx)2 = 2(1+sinx)(1+cosx) + + = + + 2 1 ( sin cos ) 1 ( 2 sin )( 1 cos ) Prove: = + + + + + 2 2 1 2 sin 2 cos 2 sin cos sin cos LHS = + + + + 1 2 sin 2 cos 2 sin cos 1 LHS = tan sin cos cot A 2 + + = ec cos sin A cos sec cos A 2 2 sin tan 1 + sin cos 1 = sin 2 = = 1 = cos 2 = = = 1 1 ( 2 = + + + sin cos sin cos ) LHS 2 2 = A 2 2 1 ( 2 = + + sin )( 1 cos ) LHS QED 2 2 cos cos cos sin 2 2 2 cos sin A 2 A A A A A A 2 2 2 1 A 2 1 1 2 2 + 2 cos cos 2 A A 1 1 2 2 Back to Qs I Back to Qs I
Exam Q9 find tan2 15 tan2 15 Find without a calculator the exact simplified value of tan + tan A B = tan( ) A B tan + 45 tan 30 1 tan tan A B = tan( 45 30 ) 1 tan 45 tan 30 3 3 1 3 3 3 = = = 3 3 tan( 15 ) + 1 1 ( )( ) 3 + + 3 3 3 3 3 3 + 9 3 3 3 3 3 12 6 3 2 3 ( ) 2 = = = tan 15 + + + + + 9 3 3 3 3 3 12 6 3 2 3 Back to Qs I Back to Qs I
Exam Q10 sinx/(1+cosx)=(1-cosx)/sinx HINTS sin + 1 cos A A To Prove: = 1 cos sin A A 1 Multiply the LHS by (1 cosA) in numerator and denominator ( )( ) ... = A + 1 cos 1 cos A + = 2 2 2 Use sin cos 1 3 What cancels out Next page for answers Back to Qs I Back to Qs I
Exam Q10 sinx/(1+cosx)=(1-cosx)/sinx = tan sin cos cot A 2 + + = ec cos sin A cos sec cos A 2 2 sin tan 1 + sin cos 1 = sin 2 = = 1 = cos 2 = = = 1 sin + 1 cos A A Prove: = 2 2 1 cos sin A A = A 2 2 sin + 1 cos A A 2 2 cos cos cos sin 2 2 2 cos sin A 2 A A A A A A = LHS 1 cos 1 cos A A 2 2 2 1 A sin sin cos A 1 A 2 A 2 1 1 = LHS 2 2 cos A + 2 cos cos 2 A A 1 1 2 2 sin sin cos A A A = LHS 2 sin A 1 cos A = LHS sin A QED Back to Qs I Back to Qs I
Exam Q11 (sec2x+tan2x)(cosec2x+cot2x)=1+2sec2xcosec2xHINTS To Prove: + + = + 2 2 2 2 2 2 (sec tan )(cos cot ) 1 2 sec cos x x ec x x x ec x 1 Multiply out = 2 2 2 Deal with tan cot ... x x 2 2 tan x 3 NOW use the trig identities for and cot x Next page for answers Back to Qs I Back to Qs I
Exam Q11 (sec2x+tan2x)(cosec2x+cot2x)=1+2sec2xcosec2x + + = + 2 2 2 2 2 2 (sec tan )(cos cot ) 1 2 sec cos x x ec x x x ec x Prove: = + + + 2 2 2 2 2 2 2 2 sec cos (1) tan cos sec cot tan cot (3) LHS x ec x x ec x (2) x x x x ( ) ( ) 1 = + 2 2 2 2 ) 2 ( sec 1 cos sec cos x ec x x ec x = + 2 2 2 2 2 2 ) 2 ( sec cos cos sec cos sec x ec x ec (4) x x ec x x (4) + cos 2 2 1 1 cos sin 1 x x = + = = ) 4 ( 2 2 2 2 2 2 sin sec cos ec sin sin cos x x x x x x x x 2 2 sin cos x x = 2 2 ) 4 ( cos = = ) 3 ( 1 2 2 cos sin x x = + + 2 2 2 2 2 2 sec cos 2 sec cos sec cos 1 (3) LHS x ec x x ec (2) x x ec x QED (1) Back to Qs I Back to Qs I
Exam Q12 + sin + 1 cos 2 A A + = Prove: 1 cos sin sin A A A + sin + 1 cos 1 cos sin A A A A = + LHS 1 cos 1 cos sin sin A A A A + sin sin cos sin cos sin A 1 A 2 A A A A = + LHS 2 cos sin A A + + sin sin cos sin cos sin A A A sin A A A A = LHS 2 A 2 sin 2 = = LHS 2 sin sin A A QED Back to Qs I Back to Qs I
Exam Q13 tan2x cot2x = Prove = )(sec ec + 2 2 tan cot (sec cos cos ) ec = tan sin cos = ) 1 ) 1 2 2 (sec (cos LHS ec + + sec = 2 2 sin tan + sin cos 1 = sin 2 = = 1 = cos 2 = = = 1 2 2 = + 2 2 sec 1 cos 1 LHS ec = A 2 2 1 cot A 2 cos A ec cos sin A cos LHS = 2 2 sec cos ec 2 2 cos cos cos sin 2 2 2 cos sin A 2 A A A A A A 2 2 = )(sec ec + (sec cos cos ) LHS ec 2 1 A 2 1 1 2 2 QED + 2 cos cos 2 A A 1 1 2 2 Back to Qs II Back to Qs II
Exam Q14 (sinx+cosecx)2=sin2x+cot2x+3 ( cos sin + ) 2 = + + 2 2 sin cot 3 ec Prove: = tan sin cos + + sec = 2 2 sin tan + sin cos 1 = sin 2 = = 1 = cos 2 = = = 1 2 2 = + + 2 2 sin 2 sin cos cos LHS ec ec = A 2 2 1 cot A 2 cos A ec cos sin A cos 1 = + + + 2 2 sin 2 sin 1 ( cot ) LHS sin 2 2 cos cos cos sin 2 2 2 cos sin A 2 A A A A A A 2 2 2 1 A = + + 2 2 sin cot 3 LHS 2 1 1 QED 2 2 + 2 cos cos 2 A A 1 1 2 2 Back to Qs II Back to Qs II
Exam Q15 cotx+tanx=secxcosecx + = cot tan sec cos ec Prove: = tan sin cos + + sec = 2 2 cos sin sin tan + sin cos 1 = sin 2 = = 1 = cos 2 = = = 1 = + LHS 2 2 sin cos = A 2 2 1 cot A 2 cos A ec cos sin A cos + 2 2 cos sin 2 2 = cos cos cos sin 2 2 2 cos sin A 2 A A A A A A LHS sin cos 2 2 2 1 A 1 = LHS 2 1 1 2 2 cos sin + 2 cos cos 2 A A 1 1 2 2 1 1 = = sec cos LHS ec sin cos QED Back to Qs II Back to Qs II
Exam Q16 tan2x+cot2x=sec2x+cosec2x -2 + = + 2 2 2 2 tan cot sec cos 2 ec Prove: = tan sin cos + + sec = 2 2 sin tan + sin cos 1 = sin 2 = = 1 = cos 2 = = = 1 = ) 1 + ) 1 2 2 (sec (cos LHS ec 2 2 = A 2 2 1 cot A 2 cos A ec cos sin A cos = + 2 2 sec cos 2 LHS ec QED 2 2 cos cos cos sin 2 2 2 cos sin A 2 A A A A A A 2 2 2 1 A 2 1 1 2 2 + 2 cos cos 2 A A 1 1 2 2 Back to Qs II Back to Qs II
Exam Q17 sin 2 x 2 Prove: = cot x = 1 cos x tan sin cos + + sec = 2 2 sin tan + sin cos 1 = sin 2 = = 1 = cos 2 = = = 1 2 2 2 sin cos x x = A 2 2 1 cot A 2 cos A ec cos sin A cos LHS = 2x 1 1 ( 2 sin ) 2 2 cos cos cos sin 2 2 2 cos sin A 2 A A A A A A 2 sin cos x x 2 2 = 2 2 sin x 2 1 A 2 1 1 2 2 cos x + 2 cos cos 2 A A 1 1 = = cot x 2 2 sin x QED Back to Qs II Back to Qs II
Exam Q18 2-tan2x = = 2 2 2 2 tan 2 sec 3 tan x x x Prove: = tan sin cos + + sec = 2 2 sin tan + sin cos 1 = sin 2 = = 1 = cos 2 = = = 1 = + 2 2 1 ( 2 tan ) 3 tan RHS x x 2 2 = A 2 2 1 cot A 2 cos A ec cos sin A cos = + 2 2 2 2 tan 3 tan RHS x x 2 2 cos cos cos sin 2 2 2 cos sin A 2 A A A A A A 2 2 = 2 2 tan RHS x 2 1 A 2 1 1 QED 2 2 + 2 cos cos 2 A A 1 1 2 2 Back to Qs II Back to Qs II
Exam Q19 Prove: ( tan ) + + = + + sec )(cot x cos 1 ( sec )( 1 cos ) x x ecx x ecx LHS= tan + + + cot sec cot tan cos sec cos x x x x x ecx x ecx = + + + sin cos cos sin x x x x 1 1 1 1 cos sin cos sin cos sin cos sin x x x x x x x x = + + + 1 cos sec sec cos ecx x x ecx = + + 1 ( sec )( 1 cos ) x ecx QED Back to Qs II Back to Qs II
Exam Q20 = 4 4 2 sec tan 2 sec 1 x x x Prove: = tan sin cos + + sec = 2 2 sin tan + sin cos 1 = sin 2 = = 1 = cos 2 = = = 1 2 2 2 2 sec sec tan tan x x x x LHS= 2 2 = A 2 2 1 cot A 2 cos A ec cos sin A cos = + ) 1 2 2 2 2 sec 1 ( x tan ) tan (sec x x x 2 2 cos cos cos sin 2 2 2 cos sin A 2 A A A A A A = + + 2 2 2 2 2 2 sec sec tan tan sec tan x x x x x x 2 2 2 1 A = = = + + 2 2 sec sec tan (sec x x x 2 1 1 2 2 + 2 ) 1 cos cos 2 A A 2 2 1 1 x 2 2 2 sec 1 1 x QED Back to Qs II Back to Qs II
Exam Q21 = + cos sin A A cos 2 A Prove: cos sin A A = tan sin cos + + sec = 2 2 sin tan + sin cos 1 = sin 2 = = 1 = cos 2 = = = 1 + cos 2 cos sin A A A 2 2 LHS = + cos sin cos sin A A A A = A 2 2 1 cot A 2 cos A ec cos sin A cos + cos 2 (cos sin ) = A A sin ) sin A 2 2 cos cos cos sin 2 2 2 cos sin A 2 A A A A A A 2 2 cos A A 2 2 ( 2 1 A 2 2 sin + = cos (cos sin ) A A A A 2 1 1 2 2 2 2 cos A sin + A A + 2 cos cos 2 A A 1 1 2 2 = cos A QED Back to Qs II Back to Qs II
= Exam Q22 tan sin cos + + sec = 2 2 sin tan + sin cos 1 = sin 2 = = 1 = cos 2 = = = 1 Prove 2 2 = 2 sin sec 2 A A 1 1 + = A 2 2 1 cot A 2 cos A ec cos sin A cos cos sin cos sin A A A A 2 2 cos cos cos sin 2 2 2 cos sin A 2 A A A A A A LHS = 2 2 + cos sin cos sin A A A A 1 1 + 2 1 A + cos sin cos sin cos sin cos sin A A A A A A A A 2 1 1 2 2 + 2 cos cos 2 A A 1 1 2 2 = + sin cos sin cos A A 2 A A 2 2 2 sin sin cos cos A A A A = = 2 sin A sin = 2 2 2 cos sin 2 A A A = sin 2 sin sec 2 A A A 1 cos 2 cos 2 A A QED Back to Qs II Back to Qs II
Exam Q23 = 2 cot tan 2 cot Prove: 2 2 tan 2 = 2 RHS= 2 tan 1 tan 1 2 tan = 2 2 tan 2 1 tan = 2 2 tan 2 tan ( ) = = 2 cot tan cot tan 1 1 2 2 QED Back to Qs II Back to Qs II
Exam Q24 ( ) ( ) Prove: 2 2 + = 2+ 2 + sin 4 tan x 1 sin 1 x x cos cos x x = tan sin cos + + sec = 2 2 sin tan + sin cos 1 = sin 2 = = 1 = cos 2 = = = 1 2 2 ( ) ( ) 2 2 + + sin sin x x 1 1 LHS= = A 2 2 cos cos cos ( sec cos x x x x 1 cot A 2 cos A ec cos sin A cos ( ) )2 2 = + + sec tan tan x x x x 2 2 cos cos cos sin 2 2 2 cos sin A 2 A A A A A A 2 2 = + + 2 2 sec + 2 sec tan tan + x x x x 2 1 A 2 2 sec 2 sec tan tan x x x x 2 1 1 2 2 + 2 cos cos 2 A A 1 1 = + 2 2 2 sec 2 tan x x 2 2 = + + 2 2 1 ( 2 2+ = tan tan 4 ) 2 tan x x 2 x QED Back to Qs II Back to Qs II
Summary You should be able to: Be able to derive all the trig identities Apply them when appropriate to solve trig equations Find exact values (addition formulas) Apply where appropriate to complete a Proof or show that question manipulate trig expressions fluently