Stata's Capabilities for Efficiency and Productivity Assessment

 
Topic
:
 
Stata’s Capabilities For Frontier Efficiency Assessment
 
Dr. Rachita Gulati
 
Associate Professor (Economics), Department of Humanities and Social Sciences
 
Indian Institute of Technology Roorkee Uttarakhand, India
 
Abstract :
The development of a comprehensive suite of packages and commands within
Stata has empowered researchers to conduct frontier efficiency and productivity
assessments effectively.
 
                                          
Presented By
P
o
i
n
t
s
 
t
o
 
D
i
s
c
u
s
s
 
Productivity
Estimation
 
and
De
c
ompo
s
i
t
ion
 
Malmquist Productivity
 
Index
 
(MPI)
Malmquist
 
Luenberger Productivity
 
Index (MLPI)
 
Efficiency
Mea
s
u
r
emen
t
Approaches
N
o
n
p
a
r
a
m
e
t
r
i
c
 
a
p
p
r
o
a
c
h
e
s
 
(
D
E
A
,
 
F
D
H
)
P
a
r
a
m
e
t
r
i
c
 
a
p
p
r
o
a
c
h
e
s
 
(
S
F
A
,
 
T
F
A
,
 
R
T
F
A
)
T
e
c
h
n
i
c
a
l
 
e
f
f
i
c
i
e
n
c
y
 
(
T
E
)
Radial
 
vs. Non-radial
 
TE
 
measures
Orientations in
 
DEA(Input
 
and
 
Output
 
Orientations)
R
eturns-to-
S
cale
 
A
ssu
m
ptions
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
2
P
r
o
d
u
c
t
i
o
n
 
t
e
c
h
n
o
l
o
g
y
 
Inputs:
x
 
 
(
x
1
,
 
x
2
 
,
...,
 
x
m
 
)
Output:
y
 
 
(
 
y
1
,
 
y
2
 
,
...,
 
y
s
 
)
 
Feasible
 
production
plan, if 
y 
can be
produced
 
from
 
x
T
 
 
 
x
,
 
y
 
 
:
 
y
 
ca
n
 
be
 
p
r
odu
ce
d
 
fr
om
 
x
 
S
i
n
g
l
e
-
i
n
p
u
t
 
a
n
d
 
s
i
n
g
l
e
-
o
u
t
p
u
t
c
a
s
e
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
3
 
O
r
i
e
n
t
a
t
i
o
n
s
 
i
n
e
f
f
i
c
i
e
n
c
y
m
e
a
s
u
r
e
m
e
n
t
I
n
p
u
t
-
o
r
i
e
n
t
e
d
O
u
t
p
u
t
-
o
r
i
e
n
t
e
d
 
T
w
o
 
p
o
p
u
l
a
r
 
a
p
p
r
o
a
c
h
e
s
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
4
 
H
e
r
e
,
 
w
e
 
a
r
e
 
t
r
y
i
n
g
 
t
o
a
s
s
e
s
s
 
S
t
a
t
a
s
c
a
p
a
b
i
l
i
t
i
e
s
 
i
n
 
e
f
f
i
c
i
e
n
c
y
a
n
d
 
p
r
o
d
u
c
t
i
v
i
t
y
e
s
t
i
m
a
t
i
o
n
 
u
s
i
n
g
 
t
h
e
s
e
t
w
o
 
p
o
p
u
l
a
r
a
p
p
r
o
a
c
h
e
s
.
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
5
E
f
f
i
c
i
e
n
c
y
 
a
n
d
 
P
r
o
d
u
c
t
i
v
i
t
y
 
M
o
d
e
l
s
 
T
e
c
h
n
i
c
a
l
 
E
f
f
i
c
i
e
n
c
y
 
M
o
d
e
l
s
D
E
A
-
b
a
s
e
d
Charnes,
 
Cooper,
 
Rhodes
 
(CCR)
 
(1978)
 
Model
Banker,
 
Charnes,
 
Cooper
 
(BCC)
 
(1984)
 
Model
Slacks
 
and
 
RTS-based
 
Estimation
Directional Distance Function (DDF) 
Model (Radial and Nonradial)
(Chung
 
et
 al., 
1997)
S
F
A
-
b
a
s
e
d
Stevenson
 
(1980)
 
Model
Meeusen
 
and
 
Van
 
den
 
Broeck
 
(MB)
 
(1977)
Aigner
 
et
 
al
.
 
(1977)
 
Model
 
P
r
o
d
u
c
t
i
v
i
t
y
 
C
h
a
n
g
e
 
M
o
d
e
l
s
Malmquist
 
Productivity
 
Index
 
(MPI)
Malmquist
 
Luenberger
 
Productivity
 
Index
 
(MLPI)
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
6
E
f
f
i
c
i
e
n
c
y
 
v
s
.
 
P
r
o
d
u
c
t
i
v
i
t
y
 
Decision making 
units (DMUs) are 
used 
to 
describe 
the
production
 
entity
 responsible
 
for
 
turning
 
inputs
 
into
outputs in instances 
when 
the firm may not be entirely
appropriate, like 
power 
plants, schools, banks, states or
countries,
 
etc.
j
 
 
1
,
 
2
,
...,
 
n
Productivity is 
a 
ratio of output to input
Productivity= output/input
 
E
f
f
i
c
i
e
n
c
y
 
i
s
 
a
 
r
e
l
a
t
i
v
e
 
c
o
n
c
e
p
t
Efficiency= 
productivity/maximum
 
productivity
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
7
D
a
t
a
 
E
n
v
e
l
o
p
m
e
n
t
 
A
n
a
l
y
s
i
s
 
(
D
E
A
)
 
DEA
 
is
 
a
 
data-oriented 
and
 
non-parametric
 
based
 
frontier
 
approach
First
 
originated
 
by
 Charnes,
 
Cooper
 
and
 
Rhodes
 
(CCR)
 
(1978)
 
Charnes,
 
A.,
 
Cooper,
 
W.W.,
 
and
 
Rhodes,
 
E.
 
(1978),
 
“Measuring
 
efficiency
 
of
 
decision
 
making
units”,
 
European
 
Journal
 
of
 
Operational
 
Research,
 
2,
 
429-444.
 
 
CCR
 
generalized
 
Farrell’s
 (1957) 
radial
 measure of 
technical
 
efficiency
 to
multiple
 
input,
 
multiple-output
 
cases.
 
Farrell,
 
M.
 
J.,
 
(1957),
 
“The
 
measurement
 
of
 
productive
 
efficiency”,
 
Journal
 
of
 
the
 
Royal
Statistical
 
Society
,
 
Series
 
A,
 
Vol.120,
 
No.
 
3,
 
pp.
 
253-290.
 
 
DEA
 
is
 
a
 
n
o
n-par
a
me
t
ric,
 
f
ron
t
ie
r
-ba
s
e
d
 
app
r
oa
c
h
 
f
or
 
m
e
a
s
ure
m
ent
 
of
efficiency
 
and
 
productivity.
I
.
 
C
h
a
r
n
e
s
,
 
C
o
o
p
e
r
 
a
n
d
 
R
h
o
d
e
s
 
(
C
C
R
)
 
(
1
9
7
8
)
 
CCR 
gives information 
on 
the technical efficiency
(TE) 
of
 
a
 
unit
 using
 
Shephard’s
 
distance
 
function
 
Assumptions:
Constant
 
Returns
 
to
 
Scale
Strong disposability
 
of 
inputs 
and
 outputs
Convexity
 
of 
Production
 
Possibility Set
 
Two
 
distinct
 
variants
 
of
 the
 
CCR
 
model-
 
Input-oriented
 
CCR
 
(CCR-I
 
Output-Oriented
 
CCR
 
(CCR-O)
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
8
C
C
R
 
M
o
d
e
l
 
Consider
 
n
 
production units (
j
=1,…..,
n
)
x
 
vector 
of 
inputs
 
(where
 x
ij
 
is
 quantity
 
of
 
i
th
 
input
 (
i
=1,….
m
)
y
 
vector
 of
 
outputs
 
(where
 
y
rj
 
is 
the quantity 
of
 
r
th
 
output
 
(
r
=1,….,
s
).
 
Maximum possible
(radial)
 
contraction
 
in
inputs
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
9
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
10
C
C
R
 
M
o
d
e
l
:
 
A
p
p
l
i
c
a
t
i
o
n
 
i
n
 
S
t
a
t
a
 
Technical
 
information:
Stata 
11.2 
and 
above installation 
required 
(Badunenko 
and Mozharovskyi,
2016))
Badunenko, 
O.,
 
and
 
Mozharovskyi, P.
 
(2016). Nonparametric
 
frontier analysis using
 
Stata.
 
Stata
 
Journal
, 
16
(3),
550–589.
 
Syntax
teradial
 
outputs
 = 
inputs
 
(ref
 
outputs
 = 
ref
 
inputs)
 
if
 
in,
 
rts (rtsassumption)
 
base
(basetype) ref(varname)
 
tename(newvar)
 
noprint
 
Specification
 
outputs 
= 
list 
of output 
variables
inputs 
=
 
list
 
of
 
input 
variables
rts
 
(rtsassumption)
 
= 
specifies
 
the
 
returns
 
to
 
scale
 
assumption.
 
Use
 
rts(crs) for
 
CRS,
rts(nirs)
 
for
 
NIRS
 
and
 
rts(vrs)for
 
VRS
base
 
(basetype)
 
=
 
specifies
 
the
 
type
 of
 
optimization.
 
Use
 
base(output)for 
output-
oriented
 
measure
 and
 
base(input)
 for 
input-oriented
 
measure
tename(newvar)
 
=
 
creates
 newvar
 
containing
 
the
 
radial
 
measures
 
of
 
technical
efficiency
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
11
C
o
n
t
d
 
Syntax
 
for
 
CCRI
 
and
 
CCRO
teradial
 
outputs = inputs (ref outputs
 
= ref inputs), rts
 
(rtsassumption) base
(basetype) tename(newvar)
 
. 
teradial
 
Y=X1
 
X2,
 
rts(crs)
 
base(output)
 
tename(CCRO)
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
12
I
I
.
 
B
a
n
k
e
r
,
 
C
h
a
r
n
e
s
 
a
n
d
 
C
o
o
p
e
r
 
(
B
C
C
)
 
(
1
9
8
4
)
 
M
o
d
e
l
 
Banker
 
et
 
al.
 
(1984)
 
as
 
an
 
extension
 
of
 
the
 
CCR
 
Model.
Based
 
on
 
the
 
variable
 
returns
 
to
 
scale
Banker, 
R. D., Charnes, A., & 
Cooper, 
W. W. 
(1984). Some Models for Estimating 
Technical
and Scale Inefficiencies in Data Envelopment Analysis. 
Management Science
, 
30
(9), 1078–
1092.
Two
 
variants:
 
BCC-I
 
and
 
BCC-O
B
C
C
 
M
o
d
e
l
:
 
A
p
p
l
i
c
a
t
i
o
n
 
i
n
 
S
t
a
t
a
 
Syntax
teradial
 
outputs
 
= 
inputs
 
(
ref
 
outputs
 
= 
ref
 
inputs
)
 
if
 
in
 
,
 
rts
 
(
rtsassumption
)
 
base
(
basetype
)
 
ref(
varname
)
 
tename(
newvar
)
 
noprint
 
Here,
 
specify ‘vrs’ in
 
rts()
 
Specification
 
outputs 
= 
list 
of output 
variables
inputs 
=
 
list
 
of
 
input 
variables
rts
 
(rtsassumption)
 =
 
specifies
 
the
 
returns
 
to
 
scale
 
assumption.
 Use
rts(crs)
 
for
 
CRS,
 
rts(nirs)
 
for
 
NIRS and rts(vrs)for
 
VRS
base
 
(basetype)
 
=
 
specifies
 
the
 
type
 of
 
optimization.
 
Use
 
base(output)for
 
output-
oriented
 
measure
 
and
 
base(input)
 
for
 input-oriented
 
measure
tename(newvar)
 
=
 
creates
 newvar
 
containing
 
the
 
radial
 
measures
 
of
 
technical
efficiency
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
14
B
C
C
 
M
o
d
e
l
:
 
A
p
p
l
i
c
a
t
i
o
n
 
i
n
 
S
t
a
t
a
. 
teradial
 
Y=X1
 
X2,
 
rts(vrs)
 
base(output)
 
tename(BCCO)
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
15
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
16
C
o
m
p
u
t
a
t
i
o
n
 
o
f
 
s
l
a
c
k
s
 
a
n
d
 
R
T
S
 
p
r
o
p
e
r
t
i
e
s
 
min
 
(Objective)
 
i
 
 
1
,
 
2
,
...,
 
m
;
 
(
I
npu
t
)
 
r
 
 
1
,
 
2
,
...,
 
s
;
 
(
O
u
t
pu
t
)
 
o
 
n
 
n
 
 
*
 
=
 
 
 
,
 
 
,
s
 
,
s
 
j
subject
 
to
j
 
x
i
j
 
 
 
s
 
 
 
 
x
io
j
 
1
j
 
y
r
j
 
 
 
s
 
 
 
y
ro
j
 
1
s
 
,
 
s
 
,
 
j
 
 
 
0
 
j
 
 
1
,
 
2
,
...,
 
n
 
(Non-negativity)
dea:
 
command
 
A
l
t
e
r
n
a
t
i
v
e
 
c
o
m
m
a
n
d
,
 
t
o
 
o
b
t
a
i
n
 
e
f
f
i
c
i
e
n
c
y
 
a
n
d
 
s
l
a
c
k
s
Ji, Yong-Bae and Choonjoo Lee (2010), “Data envelopment analysis”, 
Stata Journal 
10(2): 267-
280.
 
st0193.pkg
dea ivars = ovars [if] [in] [, rts(crs 
| 
vrs 
| 
drs 
| 
nirs) ort(in 
| 
out)
stage(1
 
|
 
2) trace
 
saving(
filename
)]
 
where
 
the options
 
are:
 
rts(crs|vrs|drs|nirs)
 
specifies
 
the
 
returns
 
to
 
scale.
 
The
 default
 
is
 
rts(crs)
ort(in|out)
 
specifies
 
the
 
orientation.
 
The 
default
 
is
 
ort(in)
stage(1|2)
 
specifies
 
the
 
way
 
to
 
identify
 
all
 
efficiency
 
slacks.
 
The 
default
 
is
 
stage(2)
trace
 
save
 
all
 
sequences
 
and
 
results
 
from
 
Results
 window
 
to
 
dea.log
saving(filename)
 
save
 results
 
to
 
filename.
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
17
dea:
 
command
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
18
I
I
I
.
 
D
i
r
e
c
t
i
o
n
a
l
 
D
i
s
t
a
n
c
e
 
F
u
n
c
t
i
o
n
 
(
D
D
F
)
 
Chung
 
et
 
al.
 
(1997)
 
developed
 
this
 
model
Simultaneous adjustment 
of
 
undesirable inputs
 
and 
outputs
 
along 
with
 
the
desirable
 
inputs
 
and
 outputs.
Chung, 
Y.
 
H., Fare, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: a
directional distance function approach. 
Journal of Environmental Management
, 
51
, 229–
240.
Weak
 
disposability
 
of
 
undesirable
 
output.
R
a
d
i
a
l
 
D
D
F
 
M
o
d
e
l
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
19
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
20
D
D
F
-
D
E
A
 
m
o
d
e
l
:
 
A
p
p
l
i
c
a
t
i
o
n
 
i
n
 
S
t
a
t
a
 
Technical 
information: st0665.pkg, Available for 
Stata 
16 
and 
above
installation
 
required
 (Wang
 
et
 al.,
 2022)
Wang, 
D.,
 
Du,
 
K.,
 
&
 Zhang,
 N.
 
(2022).
 
Measuring
 
technical
 
efficiency
 
and
 
total
 
factor
productivity
 
change
 
with
 
undesirable
 
outputs
 
in 
Stata.
 
Stata Journal
,
 
22
(1),
 
103–124.
D
D
F
-
D
E
A
 
M
o
d
e
l
:
 
A
p
p
l
i
c
a
t
i
o
n
 
i
n
 
S
t
a
t
a
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
21
I
V
.
 
A
l
t
e
r
n
a
t
i
v
e
 
v
a
r
i
a
n
t
s
:
 
N
o
n
-
r
a
d
i
a
l
 
D
D
F
teddf X1 X2=Y:B,dmu(DMU)
time(Year)
 
nonradial
saving(ddf_result)
teddf X1 X2=Y:B, dmu(DMU)
nonradial vrs
saving(ddf_result,
 
replace)
teddf X1 X2=Y:B, dmu(DMU)
time(t) 
nonradial sequential
saving(ddf_result,replace)
 
N
o
n
-
r
a
d
i
a
l
 
D
D
F
 
w
i
t
h
 
u
n
d
e
s
i
r
a
b
l
e
s
 
(
Y
2
)
(
d
i
r
e
c
t
i
o
n
a
l
 
v
e
c
t
o
r
 
i
s
 
(
-
X
1
 
-
X
2
 
-
X
3
 
-
X
4
 
Y
1
 
-
Y
2
)
 
a
n
d
 
w
e
i
g
h
t
v
e
c
t
o
r
 
i
s
 
(
1
 
1
 
1
 
1
 
1
 
1
)
)
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
22
V
.
 
M
a
l
m
q
u
i
s
t
 
P
r
o
d
u
c
t
i
v
i
t
y
 
I
n
d
e
x
 
First proposed 
in 
Caves 
et al. (1982) and 
later modified 
by 
Fare 
et
al.(1992)
 
,
 Fare 
et 
al.(1994)
 
and
 
Ray
 
&
 Desli
 
(1997)
 
Based
 
on
 
Shephard’s
 
distance
 
function
 
It
 
provides
 a
 
decomposition
 
of
 
productivity
 change
 into
 
its
 
sources,
 
i.e.;
efficiency
 
change
 
and
 
technology
 
change
 
Assumption: Standard
 
assumptions
 of
 
DEA
 
and 
Constant returns
 
to
 
scale
 
𝑀𝑃𝐼
 
=
 
𝑡
 
𝑡
 
𝑑
𝑡
(𝑦 
 
,
 
𝑥 
 
)
 
𝑑
𝑡
+
1
(
𝑦
𝑡
+
1
,
 
𝑥
𝑡
+
1
)
 
𝑑
𝑡
(
𝑦
𝑡
+
1
,
 
𝑥
𝑡
+
1
)
 
𝑑
𝑡+1
(𝑦
 
,
 
𝑥
 
𝑡+1
 
𝑡+1
)
 
 
𝑑
𝑡
(
𝑦
𝑡
,
 
𝑥
𝑡
)
 
𝑡
 
𝑡
𝑡
 
𝑑
𝑡
+
1
(𝑦 
 
,
 
𝑥 
 
)
Te
c
hn
ic
al
Change
E
ffici
en
cy
Change
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
23
M
a
l
m
q
u
i
s
t
 
P
r
o
d
u
c
t
i
v
i
t
y
 
I
n
d
e
x
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
24
M
P
I
 
a
n
d
 
i
t
s
 
D
e
c
o
m
p
o
s
i
t
i
o
n
 
i
n
 
S
T
A
T
A
 
T
e
c
hni
c
al
 
in
f
o
r
ma
t
ion:
 
A
va
i
l
a
ble
 
f
or
 
St
a
t
a
 
16
 
a
nd
 
a
b
o
v
e
 
(i
n
s
t
alla
t
io
n
required
 
- ssc
 install
 
malmq2)
 
Syntax
malmq2
 
inputvars 
= 
outputvars
 
[ if ]
 
[ in ],
 ort(
string
)
dmu(
varname
)
 
win
dow(
#
)
 
bi
ennial
 
seq
uential
 
global
 
fgnz
 rd
 
[..other
options]
 
Specification
inputvars,
 
outputvars
 
=
 
data
 
for
 
inputs and
 
outputs
ort()
 
=
 
defines
 
orientation,
 
ort(output),
 
ort(input),
 
default
 
is 
output
dmu()=
 
specifies
 
DMU
 
names
reference
 
technology options
 
=
 
bi,
 
seq,
 
glo
decomposition
 
=fgnz
 
((Fare
 
et
 
al.,
 
1994)),
 
rd
 
((Ray
 
& Desli,
 
1997))
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
25
 
T
F
P
C
H
 
u
s
i
n
g
 
M
P
I
:
 
A
p
p
l
i
c
a
t
i
o
n
 
i
n
 
S
t
a
t
a
 
Syntax
malmq2
 
inputvars
 
= 
outputvars
 
[ if
 
]
 
[
 
in ],
 
ort(
string
)
dmu(
varname
)
 
win
dow(
#
)
 
bi
ennial
 
seq
uential
 
global
 
fgnz rd
 
[..other
options]
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
26
malmq2
 
X1
 
X2
 
=
 
Y,
 
dmu(dmu)
 
global
malmq2
 
X1
 
X2 =
 
Y,
 
dmu(dmu)
 
seq
 
ort(o)
 
fgnz
malmq2
 
X1 X2
 
=
 Y,
 
dmu(dmu)
 
ort(o)
 
rd
 
sav(tfp_result,replace)
V
I
.
 
M
a
l
m
q
u
i
s
t
 
L
u
e
n
b
e
r
g
e
r
 
P
r
o
d
u
c
t
i
v
i
t
y
 
I
n
d
e
x
 
(
M
L
P
I
)
 
First proposed 
by Chung et al. (1997), 
MLPI 
allows 
to estimate
productivity
 changes while 
accounting
 
for
 
generation
 of
 
undesirable
products
 
(e.g.,
 
pollution)
 
along
 with
 
desirable
 
products
Chung,
 
Y.
 
H.,
 
Fare,
 
R.,
 
&
 
Grosskopf,
 
S.
 
(1997). Productivity
 
and
 
undesirable
 
outputs:
 
a
 
directional
 
distance
 
function
approach.
 
Journal of
 
Environmental
 
Management
, 
51
,
 
229–240.
Based
 
on radial
 directional
 
distance function
 
(DDF)
 
Provides
 a
 
decomposition 
of
 
productivity
 change 
into
 
its
 
sources, i.e.,
efficiency
 
change
 
and
 
technology
 
change
 
Assumption:
 
same
 
as 
MPI,
 
along
 with
 weak 
disposability
 
of
 
undesirable
output
 
𝑡
,
𝑡
+
1
 
𝑀
𝐿
 
=
 
1+
 
𝐷
𝑡+1
 
𝑥
𝑡+1
,𝑦
𝑡+1
,𝑏
𝑡+1
 
 
1+
 
𝐷
𝑡 
 
𝑥
𝑡
,𝑦
𝑡
,𝑏
𝑡
 
1+
 
𝐷
𝑡+1
 
𝑥
𝑡
,𝑦
𝑡
,𝑏
𝑡
 
1+
 
𝐷
𝑡
 
𝑥
𝑡
,𝑦
𝑡
,𝑏
𝑡
 
1+
 
𝐷
𝑡+1
 
𝑥
𝑡+1
,𝑦
𝑡+1
,𝑏
𝑡+1
 
1+
 
𝐷
𝑡
 
𝑥
𝑡+1
,𝑦
𝑡+1
,𝑏
𝑡+1
Te
c
hn
ic
al
Change
Efficiency
Change
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
27
M
a
l
m
q
u
i
s
t
 
L
u
e
n
b
e
r
g
e
r
 
P
r
o
d
u
c
t
i
v
i
t
y
 
I
n
d
e
x
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
28
M
L
P
I
 
M
o
d
e
l
:
 
A
p
p
l
i
c
a
t
i
o
n
 
i
n
 
S
T
A
T
A
 
Technical 
information: 
Available 
for Stata 16 and above (installation 
required
(Wang
 
et
 
al.,
 
2022))
 
 
S
y
n
t
a
x
 
gtfpch 
inputvars
 
=
 
desirable_outputvars
:
 
undesirable_outputvars
 
[
 
if
 
] [
in ],
 dmu
 
(
varname
)
 
luen
berger
 
ort
 
(
string
)
 gx
 (
varlist
)
 
gy
 (
varlist
)
 
gb
(
varlist
)
 
nonr
adial
 
w
mat
 
(
name
) 
win
dow(
#
)
 
bi
ennial
 
seq
uential
 
global
fgnz
 
rd
 
[…other
 
options]
Specification:
 
Same
 
as
 
for 
DDF
 
model
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
29
T
F
P
C
H
 
u
s
i
n
g
 
M
L
P
I
:
 
A
p
p
l
i
c
a
t
i
o
n
 
i
n
 
S
t
a
t
a
gtfpch
 
X1
 
X2
 
=
 
Y:B, dmu(dmu)
 
nonradial
 
saving(ddf_result)
gtfpch
 
X1
 
X2
 
=
 
Y:B,
 
dmu(dmu)
 
seqential
 
ort(input)
 
leunberger saving(ddf_result,
 
replace)
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
30
 
P
a
r
a
m
e
t
r
i
c
 
A
p
p
r
o
a
c
h
e
s
 
t
o
 
F
r
o
n
t
i
e
r
 
A
n
a
l
y
s
i
s
 
Stochastic
 
Frontier
 
Models
 
Cross-Sectional
 
Models
 
Aigner et al.
(1977)
 
Model
Meeusen
 
and
 
van
 
den
Broeck
 
(1977)
 
Model
Stevenson
 
(1980)
Model
 
Greene
 
(2003)
 
Model
 
Panel
 
Data
 
Models
 
Panel
 
Data
 
Time-
invariant
 
Models
 
Schmidt
 
and
 
Sickles
(1984)
 
FE
 
Model
Schmidt
 
and
 
Sickles
(1984)
 
RE Model
 
Pitt
 
and
 
Lee
 
(1981)
Battese
 
and
 
Coelli
(1988)
 
Panel
 
Data
 
Time
Variant
 
Models
Kumbhakar
 
(1990)
Battese
 
and
 
Coelli
(1992)
 
Battese
 
and
 
Coelli
(1995)
S
t
o
c
h
a
s
t
i
c
 
F
r
o
n
t
i
e
r
 
A
n
a
l
y
s
i
s
 
(
S
F
A
)
 
Popular
 
parametric
 
approach
 
for
 
estimating
 
efficiency
 and
 
productivity.
SFA 
allows 
the deviation from the frontier 
and 
decomposes 
as; one is 
the
random
 
error
 
𝑣
𝑖𝑖
 
and
 
other 
is
 technical
 
inefficiency
 
𝑢
𝑖𝑖
 
.
Aigner, Lovell 
and 
Schmidt (1977) 
and 
Meeusen 
and 
van 
den Broeck 
(1977)
independently proposed the stochastic frontier production function 
model 
of
the
 
form.
𝑙𝑛𝑦
𝑖𝑖
 
=
 
𝛽
0
 
+
 
𝛽
1
𝑙𝑛𝑥
𝑖𝑖
 
+
 
𝑒
𝑖𝑖
 
(Assuming
 
Cobb-Douglas
 
functional
 
form 
)
 
l
𝑛𝑦
𝑖𝑖
 
=
 
𝛽
0
 
+
 
𝛽
1
𝑙𝑛𝑥
𝑖𝑖
 
+
Deterministic
 
Component
 
𝑣
𝑖𝑖
 
 
𝑢
𝑖𝑖
 
(
𝑒
𝑖𝑖
 
 
= 
𝑣
𝑖𝑖
 
 
 
𝑢
𝑖𝑖
 
)
noise
 
inefficiency
 
Here, 
𝑦
𝑖𝑖
 
is 
the output, 
𝑥
𝑖𝑖
 
is 
the vector 
of 
inputs, 
β 
is 
vector 
of 
technological
parameters to 
be 
estimated, 
𝑒
𝑖𝑖
 
= 
𝑣
𝑖𝑖
 
 
𝑢
𝑖𝑖
 
is 
the composite 
error 
that 
has 
two
components. 
𝑣
𝑖𝑖
 
that accounts for 
random 
disturbance 
and 
𝑢
𝑖𝑖
 
that accounts
technical
 inefficiency.
 
TE
 
=
 
Observed
 
Output
 
𝑀𝑎𝑥𝑖𝑖𝑚𝑢𝑚 
𝑝𝑜𝑠𝑠𝑖𝑖𝑏𝑙𝑒
 
𝑜𝑢𝑡𝑝𝑢𝑡
 
TE
 
=
 
𝑏
𝑏
 
𝑦
 
=
 
𝑦
𝑖𝑖
 
+
 
𝛽
 
𝛽
 
𝑖𝑖
 
𝑖𝑖
 
𝑙𝑛𝑥
 
+
 
𝑣 
 
 
𝑢
 
𝑖𝑖
 
𝛽
 
𝛽
 
0
 
1
 
0
 
1
+
 
𝑙𝑛𝑥
 
+
 
𝑣
 
𝑖𝑖
 
𝑖𝑖
 
0
 
1
 
𝑒
(
𝛽
 
+
 
𝛽
 
𝑙𝑛𝑥
𝑖𝑖
)
∗𝑒
𝑣
𝑖𝑖
 
(
 
+
 
𝑙𝑛𝑥
𝑖𝑖
)
 
𝑣
𝑖𝑖
 
−𝑢𝑢
𝑖𝑖
=
𝑒
 
𝛽
 
𝛽
 
∗𝑒
 
∗𝑒
 
=
 
𝑒
−𝑢
0
 
1
 
𝑖𝑖
S
F
A
:
 
C
r
o
s
s
-
S
e
c
t
i
o
n
a
l
 
M
o
d
e
l
s
 
I.
 
Aigner
 
et
 
al
. (1977)
 Model
 
(Normal-Half
 
Normal
 
Model)
𝑙
𝑛
𝑦
𝑖𝑖
 
 
= 
 
𝛽
0
 
 
+ 
 
𝛽
1
𝑙
𝑛
𝑥
𝑖𝑖
 
 
+
 
𝑣
𝑖𝑖
 
𝑢
𝑖𝑖
Assumptions
 
𝑣
 
1. 
v
i
 
(random
 
error)
 
is
 
assumed
 
to be
 
normally
 
distributed,
 
v
i
 
~
iid
 
N
(0,
 
𝜎
2
)
 
2
.
 
u
 
(
t
e
c
h
n
i
c
a
l
 
i
n
e
f
f
i
c
i
e
n
c
y
)
 
w
h
i
c
h
 
i
s
 
a
s
s
u
m
e
d
 
t
o
 
b
e
 
h
a
l
f
 
n
o
r
m
a
l
l
y
 
d
i
s
t
r
i
b
u
t
e
d
,
 
u
 
~
 
i  
 iid
 
𝑁
+
 
𝑢
 
(0,
 
𝜎
2
)
 
i
3.
 
v
i
 
is
 
independent
 
of
 
u
i
 
4.
 
Assuming
 
Cobb-Douglas
 
functional
 
form,
 
where
 
𝑦
𝑖𝑖
 
is
 
the
 
output,
 
𝑥
𝑖𝑖
 
is
 
the
 
vector
 
of
 
inputs,
 
β
 
is
vector
 
of
 
technological
 
parameters
 
to
 
be
 
estimated.
 
To estimate
 
β
 
,
 
Aigner
 
et
 
al
.
 
used
 
maximum
 
likelihood
 
estimation
 
and
 
parametrized
 
the
 
log-
likelihood
 
function
 
for
 
the
 
normal-half
 
normal
 
model.
 
l
n
 
L(
𝑦
|
𝛽
,
 
𝜎
,
 
𝜆
)
 
=
 
 
𝑁
 
l
n
 
𝑖
𝑖
=
1
 
+ 
𝑁
 
𝑙
𝑛
𝑙
(
 
𝑒
𝑖
𝑖
𝜆
𝜆
)
 
 
𝜋𝜎
2
 
1
 
2
 
2
 
𝜎
 
2𝜎
2
 
𝑁
 
𝑒
2
𝑖𝑖=1
 
𝑖𝑖
 
𝑖𝑖
 
where,
 
𝑒
 
=
 
v
 
- 
u
 
i
 
i
 
𝑒
 
2
 
,
 
𝜎
 
is
 
variance
 
of
 
composite error
 
term
 
,
 
𝜆
 
=
 
𝜎
 
𝑢𝑢
 
𝜎
𝑣
 
, 
𝜎
2
 
= 
𝜎
2
 
+
 
𝜎
2
 
,
 
and
 
𝑙
.
 
is
𝑒
 
𝑣
 
𝑢
 
the
 
cumulative
 
distributive
 
function
 
(cdf)
 
of
 
the
 
standard
 
normal
 
variate.
 
Aigner,
 
D.,
 
Lovell,
 
C.K.
 
and
 
Schmidt,
 
P.,
 
1977.
 
Formulation
 
and
 
estimation
 
of
 
stochastic
 
frontier
 
production
 
function
 
models.
 
Journal
 
of
Econometrics
,
 
6
(1),
 
pp.21-37
.
 
S
F
A
 
i
n
 
S
t
a
t
a
 
S
t
a
t
a
 
p
a
c
k
a
g
e
-
 
f
r
o
n
t
i
e
r
Technical
 
Information:
 
Available
 
for
 
Stata
 
15
 
and
 
above
 
(no
 
installation required)
 
Syntax
frontier
 
depvar
 
[indepvars], [options]
Specification
depvar = dependent variable
indepvars
 
=
 
independent
 
variables
[options]
distribution(hnormal)-
 
half-normal
 
distribution
 
for
 
the
 
inefficiency
 
term
distribution(exponential)
 
-exponential
 
distribution
 
for
 
the
 
inefficiency
 
term
distribution(tnormal)-
 
truncated-normal
 
distribution
 
for the
 
inefficiency
 
term
 
Post
 
Estimation
 
Commands
 
for
 
predicting
 
inefficiency
 
of
 
each
 
firm.
predict
 
(file_name),
 
u
 
(For
 
predicting
 
inefficiency
 
of
 
each
 
firm)
predict
 
(file_name),
 
te
 
(For
 
predicting
 
efficiency
 
of
 
each
 
firm)
R
e
s
u
l
t
s
 
f
r
o
m
 
A
i
g
n
e
r
 
e
t
 
a
l
.
 
(
1
9
7
7
)
 
M
o
d
e
l
 
u
s
i
n
g
 
f
r
o
n
t
i
e
r
 
Source: 
Coelli,
 
T.
 
(1996).
 
A
 
guide
 
to 
Frontier
4.1:
 
A
 
computer
 
program 
for
 stochastic
frontier
 
production
 
function
 
and cost 
function
estimation.
 
Department
 
of 
Econometrics
University
 of
 
New
 
England
 
Armidale
NSW
,
 
2351
C
o
n
t
d
.
.
 
S
t
a
t
a
 
p
a
c
k
a
g
e
 
 
s
f
c
r
o
s
s
 
b
y
 
B
e
l
l
o
t
i
 
e
t
 
a
l
.
 
(
2
0
1
3
)
B
e
l
o
t
t
i
,
 
F
.
,
 
D
a
i
d
o
n
e
,
 
S
.
,
 
I
l
a
r
d
i
,
 
G
.
 
a
n
d
 
A
t
e
l
l
a
,
 
V
 
(
2
0
1
3
)
,
 
S
t
o
c
h
a
s
t
i
c
 
f
r
o
n
t
i
e
r
 
a
n
a
l
y
s
i
s
 
u
s
i
n
g
 
S
t
a
t
a
,
 
S
t
a
t
a
 
J
o
u
r
n
a
l
,
 
1
3
,
 
(
4
)
,
 
7
1
8
-
7
5
8
Technical
 
Information:
 
Available
 
for
 
Stata
 
15
 
and
 
above
 
(installation
 
required)
 
Syntax
sfcross
 
depvar
 
[indepvars],
 
[options]
 
Specification
depvar 
=
 
Dependent
 
Variable
Indepvars
 =
 
List
 of
 
independent
 
variables
 
[options]
distribution(hnormal)-half-normal
 
distribution
 
for
 
the
 
inefficiency
 
term
distribution(exponential)-exponential
 
distribution
 
for
 
the
 
inefficiency
 
term
distribution(tnormal)-truncated-normal
 
distribution
 
for
 
the
 
inefficiency
 
term
 
Post Estimation
 
Commands
 
for
 
predicting
 
efficiency
 
and
 
inefficiency
 
of
 
each
 
firm.
predict
 
(file_name),
 
u
 
(For
 
predicting
 
inefficiency through Batesse
 
and Coelli, 1988
 
Method)
predict
 
(file_name), bc
 
(For
 
predicting
 
efficiency
 
through
 
Batesse
 
and Coelli,
 
1988
 
Method )
predict
 
(file_name), jlms
 
(For
 
predicting
 
efficiency
 
through
 
Jondrow
 
et
 
al.,
 
1982
 
Method)
R
e
s
u
l
t
s
 
f
r
o
m
 
A
i
g
n
e
r
 
e
t
 
a
l
.
 
(
1
9
7
7
)
 
M
o
d
e
l
 
u
s
i
n
g
 
s
f
c
r
o
s
s
 
sfcross lny lnx1 lnx2, distribution(hnormal)
predict
 
ineff,
 
u
predict eff_jlms, jlms
predict
 
eff_bc,
 
bc
I
I
.
 
M
e
e
u
s
e
n
 
a
n
d
 
V
a
n
 
d
e
n
 
B
r
o
e
c
k
 
(
M
B
)
 
(
1
9
7
7
)
(
N
o
r
m
a
l
-
 
E
x
p
o
n
e
n
t
i
a
l
 
M
o
d
e
l
)
 
Meeusen,
 
W.
 
and
 
van
 
Den
 
Broeck,
 
J.
 
(1977).
 
Efficiency
 
estimation
 
from
 
Cobb-Douglas
 
production
functions
 
with composed
 
error.
 
International
 
Economic
 
Review
,
 
pp.435-444.
 
M
e
e
u
s
e
n
 
a
n
d
 
V
a
n
 
d
e
n
 
B
r
o
e
c
k
 
(
M
B
)
 
(
1
9
7
7
)
 
𝑙𝑛𝑦
𝑖𝑖
 
=
 
𝛽
0
 
+
 
𝛽
1
𝑙𝑛𝑥
𝑖𝑖
 
+
 
𝑣
𝑖𝑖
 
 
𝑢
𝑖𝑖
 
Assumptions
 
𝑢
𝑖𝑖
 
(technical
 
i
n
e
f
f
i
c
i
e
n
c
y
)
w
h
i
c
h
i
s
a
s
s
u
m
e
d
t
o
b
e
e
x
p
o
n
e
n
t
i
a
l
l
y
 
i
 
𝑢
 
d
i
s
t
r
i
b
u
t
e
d
 
u
 
~
𝑒
𝑒
𝑥
𝑥
𝑝
𝑝
𝑜
𝑜
𝑛
𝑛
(
𝜃
𝜃
𝜃
𝜃
)
 
𝜎
𝜎
2
)
 
T
o
 
e
st
ima
t
e
 
β
,
 
Meeu
s
en
 
and
 
van
 
den
 
Broeck
 
(MB)
 
u
s
ed
 
MLE
 
a
nd
 
parametrized the
 
log-likelihood
 
function
 
for
 
the
 
Normal-
 
Exponential 
model.
 
ln
 
L
 
=
 
𝑙𝑛𝐿
 
=
 
−𝑁𝑙𝑛𝜎
𝑢
 
+
 
𝑁
 
𝑣
 
𝜎
2
 
𝑢𝑢
 
2𝜎
2
 
𝑖𝑖
 
+
 
 
𝑙𝑛𝑙
 
−𝐴
 
+
 
 
𝑒
 
  
 
𝑖𝑖
𝑖𝑖
 
𝜎
𝑢𝑢
 
i
 
i
 
𝑒
 
𝑒
 
𝑣
 
𝑢
 
where,
 
𝑒
𝑖𝑖
  
=
 
v
 
-
 
u
 
,
 
𝜎
2
 
is
 
variance
 
of
 
composite
 
error
 
term
 
,
 
𝜎
2
 
=
 
𝜎
2
 
+
 
𝜎
2
 
, 
𝑙
.
 
is
 
the
 
cumulative
 
distributive
 
function
 
(cdf)
 
of
 
the
 
standard
 
normal
 
variate,
 
𝐴
 
=
 
−𝜇
𝜎
 
𝑣
 
𝑣
 
𝑢
 
, 
𝜇
 
=
 
−𝑒
𝑖𝑖
 
 
𝜎
2
𝜎
 
and
 
N
 
is
 
number
 
of
 
producers.
R
e
s
u
l
t
s
 
f
r
o
m
 
M
e
e
u
s
e
n
 
a
n
d
 
V
a
n
 
d
e
n
 
B
r
o
e
c
k
 
(
M
B
)
 
(
1
9
7
7
)
 
predict
 
eff,
 
te
 
predict
 
eff,
 
bc
I
I
I
.
 
S
t
e
v
e
n
s
o
n
 
(
1
9
8
0
)
 
M
o
d
e
l
 
(
N
o
r
m
a
l
-
T
r
u
n
c
a
t
e
d
 
M
o
d
e
l
)
 
Model
 
is
 
formulated
 
as
 
𝑙𝑛𝑦
𝑖𝑖
 
=
 
𝛽
0
 
+
 
𝛽
1
𝑙𝑛𝑥
𝑖𝑖
 
+
 
𝑣
𝑖𝑖
 
𝑢
𝑖𝑖
 
Assumptions
 
𝑢
𝑢
𝑖
𝑖
𝑖
𝑖
 
(
t
e
c
h
n
i
c
a
l
 
i
n
e
f
f
i
c
i
e
n
c
y
)
 
w
h
i
c
h
 
i
s
 
a
s
s
u
m
e
d
 
t
o
 
t
r
u
n
c
a
t
e
d
 
n
o
r
m
a
l
l
y
 
d
i
s
t
r
i
b
u
t
e
d
,
 
u
i
~
i
i
d
 
𝑁
+
 
𝑢
 
(
𝜇
,
 
𝜎
2
)
 
To
 
estimate
 
β
 
,
 
Stevenson
 
(1980)
 
Model
 
used
 
maximum
 
likelihood
 
estimation
 
and
parametrized
 
the
 
log-likelihood function
 
for
 
the
 
Normal-Truncated
 
Normal
 
Model.
 
𝑒
 
ln
 
𝐿
 
=
 
−𝑁𝑙𝑛𝜎
 
 
𝑁𝑙𝑛𝑙
 
𝑖𝑖
 
 
𝜇
 
𝜇
 
 
𝑒
𝑖𝑖
𝜆𝜆
 
𝜎
𝑢𝑢
 
𝜎𝜆𝜆
 
𝜎
 
2
 
+ 
 
𝑙𝑛𝑙
 
 
1
 
 
𝑖𝑖
 
𝑒
𝑖𝑖
+𝜇
 
𝜎
 
i
 
where,
 
μ
 
(mode)
 
is
 
a
d
di
t
io
n
al
 
para
m
e
t
er
 
t
o
 
be
 
e
sti
ma
t
ed,
 
𝑒
𝑖𝑖
 
 
=
 
v 
 
-
 
u
 
i
 
𝑒
 
,
 
𝜎
2
is
 
varian
c
e
 
of
 
composite
 
error
 
term
 
,
 
𝜎
2
 
𝑒
 
𝑣
 
𝑢
 
=
 
𝜎
2
 
+
 
𝜎
2 
 
,
 
𝑙
.
 
is
 
the
 
cumulative
 
distributive
 
function
 
(cdf)
 
of
 
the
 
standard
 
normal
 
variate,
 
and
 
N
 
is
 
number
 
of
 
producers.
S
ou
r
c
e
:
 
S
te
ven
s
o
n,
 
R.E
.,
 
198
0.
 
Li
k
el
ih
o
o
d
 
fu
n
c
ti
o
ns
 
f
o
r
 
g
e
ner
ali
z
ed
 
s
t
oc
h
a
stic
 
fron
t
ier
estimation.
 
Journal
 
of
 
Econometrics
,
 
13
(1),
 
pp.57-66.
 
R
e
s
u
l
t
s
 
f
r
o
m
 
S
t
e
v
e
n
s
o
n
 
(
1
9
8
0
)
 
M
o
d
e
l
 
predict
 
eff,
 
te
 
predict
 
eff,
 
bc
 
R
e
s
u
l
t
s
 
o
f
 
B
C
,
 
J
L
M
S
,
 
M
B
,
 
a
n
d
 
S
t
e
v
e
n
s
o
n
s
 
M
o
d
e
l
s
I
V
.
 
T
i
m
e
-
I
n
v
a
r
i
a
n
t
 
S
t
o
c
h
a
s
t
i
c
 
F
r
o
n
t
i
e
r
M
o
d
e
l
s
 
Schmidt
 
and
 
Sickles
 (1984)
 
proposed
 
both
 
Time
 
invariant
 
Stochastic
 
Frontier
 
Fixed
effect 
and
 
Random
 
effect Models.
 
F
i
x
e
d
 
E
f
f
e
c
t
s
 
M
o
d
e
l
 
=
 
𝑦
𝑖𝑖𝑡
 
𝛽
 
0
 
it
 
+
 
𝛽
1
𝑥
 
+
 
𝑣
𝑖𝑖𝑡
 
 
𝑢
𝑖𝑖
 
𝑦
𝑖𝑖𝑡
 
=
 
𝑖𝑖
 
it
 
 
𝛽
 
+ 
𝛽
1
𝑥
 
+
 
𝑣
𝑖𝑖𝑡
 
Here, 
β
i
 
= 
β
0 
- 
u
i 
is 
the individual effects 
of 
fixed-effects 
model. 
In FE-Model, 
𝑢
𝑖𝑖
 
is
assumed
 
to 
be
 correlated
 
with the regressor
 
or
 with
 
𝑣
𝑖𝑖𝑡
 
R
a
n
d
o
m
 
E
f
f
e
c
t
s
 
M
o
d
e
l
 
𝑙𝑛𝑦
𝑖𝑖𝑡
 
=
 
𝛽
0
 
 
𝐸
 
𝑢
𝑖𝑖
 
+
 
𝑛
 
𝛽
𝑛
 
𝑙𝑛𝑥
𝑛𝑖𝑖𝑡
 
+
 
𝑣
𝑖𝑖𝑡
 
 
[𝑢
𝑖𝑖
 
 
𝐸
 
𝑢
𝑖𝑖
 
]
 
0
 
𝑖𝑖
 
𝑙𝑛𝑦
𝑖𝑖𝑡
 
=
 
𝛽
 
+
 
𝑛
 
𝛽
𝑛
 
𝑙𝑛𝑥
𝑛𝑖𝑖𝑡
 
+
 
𝑣
𝑖𝑖𝑡
 
 
𝑢
 
Source:
 
Schmidt,
 
P.
 
and
 
Sickles,
 
R.C.,
 
1984.
 
Production
 
frontiers
 
and
 
panel
 
data.
 
Journal
 
of
 
Business
 
&
 
Economic
 
Statistics
,
 
2
(4),
pp.367-374.
 
S
t
a
t
a
 
p
a
c
k
a
g
e
s
:
 
x
t
f
r
o
n
t
i
e
r
 
a
n
d
 
s
f
p
a
n
e
l
Technical
 
Information:
 
Available
 
for
 
STATA 15
 
and
 
above
 
(no
 
installation
 
required)
 
P
a
n
e
l
 
D
a
t
a
 
S
F
A
 
M
o
d
e
l
s
 
i
n
 
S
T
A
T
A
x
t
f
r
o
n
t
i
e
r
 
a
n
d
 
s
f
p
a
n
e
l
 
p
a
c
k
a
g
e
s
 
f
o
r
 
t
i
m
e
-
i
n
v
a
r
i
a
n
t
 
m
o
d
e
l
s
:
 
S
c
h
m
i
d
t
 
a
n
d
S
i
c
k
l
e
s
 
(
1
9
8
4
)
 
xtset
 
i
 
t
xtfrontier
 
y
 
x1
 
x2,
 
ti
 
predict
 
eff,
 
te
 
predict
 
ineff,
 
jlms
O
t
h
e
r
 
S
t
o
c
h
a
s
t
i
c
 
F
r
o
n
t
i
e
r
 
T
i
m
e
-
I
n
v
a
r
i
a
n
t
 
M
o
d
e
l
s
 
P
i
t
t
 
a
n
d
 
L
e
e
 
(
1
9
8
1
)
 
M
o
d
e
l
 
it
 
y
it 
=
 
β
0 
+
 
β
1 
𝑥
+
 
v
it
 
-
 
u
i
 
𝑁
+
 
A
s
s
u
m
p
t
i
o
n
s
:
 
u
i
 
(
t
e
c
h
n
i
c
a
l
 
i
n
e
f
f
i
c
i
e
n
c
y
)
w
h
i
c
h
 
i
s
 
a
s
s
u
m
e
d
 
t
o
 
b
e
 
h
a
l
f
 
n
o
r
m
a
l
l
y
2
 
(
0
,
 
𝜎
𝑢
 
)
 
an
d c
on
s
tant
 
 
where
 
𝜇
 
=
 
 
𝑣
 
𝑢𝑢
 
𝜎
2
+𝑇𝜎
2
 
𝑇𝜎
𝑢𝑢
𝑒
𝑖𝑖
́
 
1
 
𝑇
 
𝑖𝑖
 
𝑖𝑖
 
𝑖𝑖
𝑡
 
,
 
𝑒
́  
 
=
 
 
𝑒
 
and
 
𝜎
 
2
  
 
=
 
 
        
𝑣  
 
𝑢
  
𝑢
 
𝜎
2
𝜎
2
 
𝜎
2
+𝑇𝜎
2
 
𝑣
 
𝑢𝑢
Pitt,
 M.M. 
and
 
Lee,
 
L.F.
 
(1981
).
 
The
 
measurement
 
and
sources of technical inefficiency in the Indonesian
weaving
 
industry. 
Journal
 
of
 
Development
Economics
,
 
9
(1),
 
pp.43-64.)
 
𝑙𝑛𝐿
 
=
 
 
d
i
s
t
r
i
b
u
t
e
d
,
 
u
i
~
i
i
d
over
 
time
𝑁(𝑇
 
 
1)
 
2
 
𝑁
 
2
 
𝑣
 
𝑣
 
𝑢
 
𝜎
2
 
 
ln
 
𝜎
2
 
+
 
𝑇𝜎
2
 
+
 
𝑖𝑖
 
𝜇
∗𝑖𝑖
 
ln
 
1 − 
𝑙
 
𝜎
 
𝑖𝑖
 
𝑒
𝑖𝑖
 
𝑒
́ 
 
𝑖𝑖
 
𝑣
 
2𝜎
2
 
2
 
+
 
 
𝑖𝑖
 
1
 
𝜇
 
𝑖𝑖
 
𝜎
 
2
 
2
 
B
a
t
t
e
s
e
 
a
n
d
 
C
o
e
l
l
i
 
(
1
9
8
8
)
 
M
o
d
e
l
 
it
 
y
it
 
=
 
β
0
 
+
 
β
1
 
𝑥
+
 
v
it
 
- 
u
i
 
A
s
s
u
m
p
t
i
o
n
s
:
 
u
i
 
(
t
e
c
h
n
i
c
a
l
 
i
n
e
f
f
i
c
i
e
n
c
y
)
 
w
h
i
c
h
 
i
s
a
s
s
u
m
e
d
 
t
o
 
b
e
 
t
r
u
n
c
a
t
e
d
 
n
o
r
m
a
l
 
d
i
s
t
r
i
b
u
t
e
d
,
 
i  
 
iid
 
𝑁
+
 
𝑢
 
u
 
~
 
(0,
 
𝜎
2
)
 
and constant over
 
time.
 
𝑙𝑛𝐿
 
=
 
 
𝑁
(𝑇
 
− 1)
 
𝑁
 
2
 
2
 
𝑣
 
𝑣
 
𝑢
 
𝜎
2
 
 
ln
 
𝜎
2
 
+
 
𝑇𝜎
2  
 
+
 𝑁𝑙𝑛
 
1
 
 
𝑙
 
 
𝜇
𝜎
𝑢
 
𝑖𝑖
 
+ 
 
l
n  
 
1 −
𝑙
 
𝜇̅
𝑖𝑖
 
𝜎
 
 
𝑣
 
𝑖𝑖
 
𝑒
𝑖𝑖 
𝑒́
 
𝑖𝑖
 
𝑁
 
𝜇
 
 
2𝜎
2
 
2
 
𝜎
 
𝑢
 
2
 
1
+
 
2
𝑖𝑖
 
𝜇̅
𝑖𝑖
𝜎
 
 
2
 
where
 
𝜇̅
𝑖𝑖
 
=
 
2
 
𝜇
𝜎
𝑣
 
𝑇
𝑒
𝑖
𝑖
𝜎
𝑢𝑢
 
́
 
2
 
𝑣
 
𝑢𝑢
 
𝜎
2
+𝑇𝜎
2
 
Battese,
 
G.E.
 
and
 
Coelli, T.J.,
 
1988.
 
Prediction
 
of firm-
level technical efficiencies with 
a 
generalized frontier
production function and panel data. 
Journal of
econometrics
,
 
38
(3),
 pp.387-399)
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
48
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
49
V
.
 
T
i
m
e
-
V
a
r
i
a
n
t
 
S
t
o
c
h
a
s
t
i
c
 
F
r
o
n
t
i
e
r
M
o
d
e
l
s
 
30/11/2023
 
India
 
Stata
 
User
 
Meeting
 
2023_Rachita
 
Gulati
 
50
 
T
h
a
n
k
s
Slide Note
Embed
Share

Stata offers a range of tools for conducting frontier efficiency and productivity assessments, including nonparametric and parametric approaches, technical efficiency modeling, different orientations in DEA, productivity estimation techniques, and popular models like MPI and MLPI. The software empowers researchers to analyze efficiency and productivity in various sectors effectively.

  • Stata
  • Efficiency
  • Productivity
  • Modeling
  • Research

Uploaded on Mar 20, 2024 | 4 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. Download presentation by click this link. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

E N D

Presentation Transcript


  1. Topic: Statas Capabilities For Frontier Efficiency Assessment Abstract : The development of a comprehensive suite of packages and commands within Stata has empowered researchers to conduct frontier efficiency and productivity assessments effectively. Presented By Dr. Rachita Gulati Associate Professor (Economics), Department of Humanities and Social Sciences Indian Institute of Technology Roorkee Uttarakhand, India

  2. Points to Discuss Nonparametric approaches (DEA, FDH) Parametric approaches (SFA, TFA, RTFA) Technical efficiency (TE) Radial vs. Non-radial TE measures Orientations in DEA(Input and Output Orientations) Returns-to-ScaleAssumptions Efficiency Measurement Approaches Productivity Estimation and Decomposition Malmquist Productivity Index (MPI) Malmquist Luenberger Productivity Index (MLPI) 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 2

  3. Production technology Inputs: Single-input and single-output case x = (x1,x2,...,xm) Output: Orientationsin efficiency measurement Input-oriented Output-oriented y = (y1, y2,..., ys) Feasible production plan, if y can be produced from x T = (x, y): y can be produced from x 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 3

  4. Two popular approaches Here, we are trying to assess Stata s capabilities in efficiency and productivity estimation using these two popular approaches. 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 4

  5. Efficiency and Productivity Models Technical Efficiency Models DEA-based Charnes, Cooper, Rhodes (CCR) (1978) Model Banker, Charnes, Cooper (BCC) (1984) Model Slacks and RTS-based Estimation Directional Distance Function (DDF) Model (Radial and Nonradial) (Chung et al., 1997) SFA-based Stevenson (1980) Model Meeusen and Van den Broeck (MB) (1977) Aigner et al. (1977) Model Productivity Change Models Malmquist Productivity Index (MPI) Malmquist Luenberger Productivity Index (MLPI) 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 5

  6. Efficiency vs. Productivity Decision making units (DMUs) are used to describe the production entity responsible for turning inputs into outputs in instances when the firm may not be entirely appropriate, like power plants, schools, banks, states or countries, etc. j =1,2,...,n Productivity is a ratio of output to input Productivity= output/input Efficiency is a relative concept Efficiency= productivity/maximum productivity 30/11/2023 IndiaStataUser Meeting2023_RachitaGulati 6

  7. Data Envelopment Analysis (DEA) DEA is a data-oriented and non-parametric based frontier approach First originated by Charnes, Cooper and Rhodes (CCR) (1978) Charnes, A., Cooper, W.W., and Rhodes, E. (1978), Measuring efficiency of decision making units , European Journal of Operational Research, 2, 429-444. CCR generalized Farrell s (1957) radial measure of technical efficiency to multiple input, multiple-output cases. Farrell, M. J., (1957), The measurement of productive efficiency , Journal of the Royal Statistical Society, Series A, Vol.120, No. 3, pp. 253-290. DEA is a non-parametric, frontier-based approach for measurement of efficiency and productivity. 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 7

  8. I. Charnes, Cooper and Rhodes (CCR) (1978) CCR gives information on the technical efficiency (TE) of a unit using Shephard s distance function Assumptions: Constant Returns to Scale Strong disposability of inputs and outputs Convexity of Production Possibility Set Two distinct variants of the CCR model- Input-oriented CCR (CCR-I Output-Oriented CCR (CCR-O) 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 8

  9. CCR Model Consider n production units (j=1, ..,n) x vector of inputs (where xijis quantity of ithinput (i=1, .m) y vector of outputs (where yrjis the quantity of rthoutput (r=1, .,s). Input-Oriented CCR Model ?? ???= min????? ? ? ???????? ?????? ? ??=1 ? ??????? ??? ??=1 ??? 0 ?? = 1, .? Output-Oriented CCR Model ?? ???= max????? ? ? ? ??,?? ? ? , ? ? ? ?? = 1, .? ???????? ???? ??=1 ?? = 1, .? ??? ? ??????? ?????? ? = 1, .? ? = 1, .? ? ?? ??=1 ??? 0 ?? = 1, .? ?? ???measures the input-oriented TE of ? production unit o ?? ???measures the output-oriented TE of ? production unit o Maximum possible (radial) contraction in inputs IndiaStata User Meeting2023_RachitaGulati 30/11/2023 9

  10. Software/Package/P rogramme DEAP DEAFrontier Matlab R Frontier Methods DEA DEA DEA DEA and SFA Reference Coelli (1996) Zhu (2014) DEA Toolbox additiveDEA (Soteriades, 2017); Benchmarking (Bogetoft and Otto, 2010, 2015); FEAR (Wilson, 2014); Frontier- Frontiles (Daouia and Laurent, 2015); Nonparaeff (Oh and Suh, 2013); npsf (Badunenko et al., 2017); Productivity (Dakpo et al., 2016); semsfa (Ferrara and Vidoli, 2015); SFA (Straub, 2015); spfrontier (Pavlyuk, 2016); SSFA (Fusco and Vidoli, 2015); TFDEA (Shott and Lim, 2015); rDEA (Simm and Besstremyannaya, 2016); DJL (Lim, 2016). frontier, xtfrontier Kumbhakar and Wang (2015) Tauchmann(2012) Stata Packages: - DEA (Ji and Lee, 2010); SFA (Kumbhakar et al., 2015); sfcross (Belotti et al., 2013); sfpanel (Belotti et al., 2013); tenonradial, teradial, teradialbc, nptestind, and nptestrts; (Badunenko and Mozharovskyi, 2016); Stata DEA and SFA Additional Software/Packages: Python, GAMS, SAS, DEAExcel, DEA-Solver-Pro, MaxDEA, DPIN, TFPIP, Frontier, LIMDEP, Inverse DEA, PIM Soft Source:Adapted from Daraio et al. (2019) 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 10

  11. CCR Model: Application in Stata Technical information: Stata 11.2 and above installation required (Badunenko and Mozharovskyi, 2016)) Badunenko, O., and Mozharovskyi, P. (2016). Nonparametric frontier analysis using Stata. Stata Journal, 16(3), 550 589. Syntax teradial outputs = inputs (ref outputs = ref inputs) if in, rts (rtsassumption) base (basetype) ref(varname) tename(newvar) noprint Specification outputs = list of output variables inputs = list of input variables rts (rtsassumption) = specifies the returns to scale assumption. Use rts(crs) for CRS, rts(nirs) for NIRS and rts(vrs)for VRS base (basetype) = specifies the type of optimization. Use base(output)for output- oriented measure and base(input) for input-oriented measure tename(newvar) = creates newvar containing the radial measures of technical efficiency 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 11

  12. Contd Syntax for CCRI and CCRO teradial outputs = inputs (ref outputs = ref inputs), rts (rtsassumption) base (basetype) tename(newvar) . teradial Y=X1 X2, rts(crs) base(output) tename(CCRO) Hypothetical Sample Data X1 X2 Y 2 5 1 2 4 2 6 6 3 3 2 1 6 2 2 30/11/2023 IndiaStataUser Meeting2023_RachitaGulati 12

  13. II. Banker, Charnes and Cooper (BCC) (1984) Model Banker et al. (1984) as an extension of the CCR Model. Based on the variable returns to scale Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science, 30(9), 1078 1092. Two variants: BCC-I and BCC-O Input-Oriented BCC Model ?? ???= min????? ? Output-Oriented BCC Model ?? ???= max????? ? ? ? ??,?? ? ? , ? ? n n j?ij ??BCC? i = 1, .m j?ij ?io i = 1, .m o io Con vexity j=1 j=1 n n j?rj ??BCC? r = 1, .s j?rj ?ro j=1 ? ???= 1 ??=1 r = 1, .s o ro j=1 ? ???= 1 ??=1 ?? = 1, .? ?? = 1, .? j 0 j 0 30/11/2023 IndiaStata User Meetin g 2023_RachitaGulati 13

  14. BCC Model: Application in Stata Syntax teradial outputs = inputs (ref outputs = ref inputs) if in , rts (rtsassumption) base (basetype) ref(varname) tename(newvar) noprint Here, specify vrs in rts() Specification outputs = list of output variables inputs = list of input variables rts (rtsassumption) = specifies the returns to scale assumption. Use rts(crs) for CRS, rts(nirs) for NIRS and rts(vrs)for VRS base (basetype) = specifies the type of optimization. Use base(output)for output- oriented measure and base(input) for input-oriented measure tename(newvar) = creates newvar containing the radial measures of technical efficiency 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 14

  15. BCC Model: Application in Stata . teradial Y=X1 X2, rts(vrs) base(output) tename(BCCO) Hypothetical Sample Data X1 4 7 12 10 9 X2 9 3 8 6 8 Y 10 8 16 9 7 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 15

  16. Computation of slacks and RTS properties *= min j (Objective) o , ,s ,s+ subject to jxij+s = xio j=1 jyrj s+= yro j=1 s ,s+, j 0 n i =1,2,...,m; (Input) n r =1,2,...,s; (Output) j =1,2,...,n (Non-negativity) 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 16

  17. dea: command Alternative command, to obtain efficiency and slacks Ji, Yong-Bae and Choonjoo Lee (2010), Data envelopment analysis , Stata Journal 10(2): 267- 280. st0193.pkg dea ivars = ovars [if] [in] [, rts(crs | vrs | drs | nirs) ort(in | out) stage(1 | 2) trace saving(filename)] where the options are: rts(crs|vrs|drs|nirs) specifies the returns to scale. The default is rts(crs) ort(in|out) specifies the orientation. The default is ort(in) stage(1|2) specifies the way to identify all efficiency slacks. The default is stage(2) trace save all sequences and results from Results window to dea.log saving(filename) save results to filename. 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 17

  18. dea: command X1 4 7 12 10 9 X2 9 3 8 6 8 Y 10 8 16 9 7 dmu 1 2 3 4 5 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 18

  19. III. Directional Distance Function (DDF) Chung et al. (1997) developed this model Simultaneous adjustment of undesirable inputs and outputs along with the desirable inputs and outputs. Chung, Y .H., Fare, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: a directional distance function approach. Journal of Environmental Management, 51, 229 240. Weak disposability of undesirable output. Radial DDF Model ? ?,?,?, ??, ??, ?? = ???? ?,?? ? ???????? ???? ???? ?? = 1, ? where b is undesirable output, o is the unit under consideration and ( ??,??, ??) is the directional vector. ??=1 ? ??????? ???+ ???? ? = 1, ? ??=1 ? ???????= ??? ???? ? = 1, ? ??=1 ??? 0 ?? = 1, ..,? 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 19

  20. DDF-DEA model: Application in Stata Technical information: st0665.pkg, Available for Stata 16 and above installation required (Wang et al., 2022) Wang, D., Du, K., & Zhang, N. (2022). Measuring technical efficiency and total factor productivity change with undesirable outputs in Stata. Stata Journal, 22(1), 103 124. Syntax teddf: Directional distance function (DDF) with undesirable outputs for efficiency measurement teddf inputvars = desirable_outputvars: undesirable_outputvars [ if ] [ in ], dmu(varname) time (varname) gx (varlist) gy (varlist) gb (varlist) nonradial wmat (name) vrs rf (varname) window(#) biennial sequential global [ other options] Specification Inputvars = inputs data (gx,gy,gb) = directional vector for input, good and bad output vrs = specify if variable returns required desirable_outputvars = good output data undesirable_outputvars = Undesirable output data dmu = specifies name of DMUs reference technology options = bi, seq, glo non-radial options = nonr, wmat 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 20

  21. DDF-DEA Model: Application in Stata teddf X1 X2=Y:B,dmu(DMU) saving(ddf_result, replace) DMU D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 X1 327 521 227 1333 1113 530 1104 751 164 669 749 1638 208 342 354 482 X2 67 98 105 425 162 111 194 94 66 210 119 336 83 117 81 6 Y B 1097 1995 1517 2817 3124 2844 3248 2404 1068 2463 2976 2103 915 1245 1270 1710 1678 989 303 21733 1565 1009 2221 2655 212 4470 1163 18807 652 1679 411 148 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 21

  22. IV. Alternative variants: Non-radial DDF Non-radial DDF with undesirables (Y2)(directional vector is (-X1 -X2 -X3 -X4 Y1 -Y2) and weight vector is (1 1 1 1 1 1)) teddf X1 X2=Y:B,dmu(DMU) time(Year) nonradial saving(ddf_result) teddf X1 X2=Y:B, dmu(DMU) nonradial vrs saving(ddf_result,replace) teddf X1 X2=Y:B, dmu(DMU) time(t) nonradial sequential saving(ddf_result,replace) 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 22

  23. V. Malmquist Productivity Index First proposed in Caves et al. (1982) and later modified by Fare et al.(1992) , Fare et al.(1994) and Ray & Desli (1997) Based on Shephard s distance function It provides a decomposition of productivity change into its sources, i.e.; efficiency change and technology change Assumption: Standard assumptions of DEAand Constant returns to scale ??+1(??+1,??+1) ??(??+1,??+1) ??+1(? ?+1 ??(??,??) ??+1(? ,? ) ??? = ?+1) ??(? ,? ) ,? ? ? ? Technical Change Efficiency Change 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 23

  24. Malmquist Productivity Index By (p pe f alternatively, putting the values of , q), we can obtain the required own- riod and cross-period unctions as below: distance [??+???+?,??+?] 1= ?????,???? ?????????? ?,? = (0,0) for solving ????,?? ? for solving ?????+? ????+? ??? ??=1 ? ?????+? ??+? ???? ??=1 ??? 0 ?,? = (1,1) ??+1(??+1,??+1) ? = 1, ? ?? ?,? = (0,1) for solving ??+1(??,??) ?? = 1, .? ??? for solving ?,? = (1,0) ????+1,??+1 ?? = 1, ..,? 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 24

  25. MPI and its Decomposition in STATA T echnical information: Available for Stata 16 and above (installation required - ssc install malmq2) Syntax malmq2 inputvars = outputvars [ if ] [ in ], ort(string) dmu(varname) window(#) biennial sequential global fgnz rd [..other options] Specification inputvars, outputvars = data for inputs and outputs ort() = defines orientation, ort(output), ort(input), default is output dmu()= specifies DMU names reference technology options = bi, seq, glo decomposition =fgnz ((Fare et al., 1994)), rd ((Ray & Desli, 1997)) 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 25

  26. TFPCH using MPI: Application in Stata Syntax malmq2 inputvars = outputvars [ if ] [ in ], ort(string) dmu(varname) window(#) biennial sequential global fgnz rd [..other options] DMU Year D1 D2 D3 D4 D5 D6 D7 D8 D1 D2 D3 D4 D5 D6 D7 D8 X1 327 521 227 X2 67 98 105 425 162 111 194 94 72 105 115 376 187 119 193 96 Y 2000 2000 2000 2000 1333 2000 1113 2000 2000 1104 2000 2001 2001 2001 2001 1339 2001 1130 2001 2001 2001 1097 1995 1517 2817 3124 2844 3248 2404 1403 2120 1698 3261 3476 3156 3520 2738 530 751 397 499 227 605 948 746 malmq2 X1 X2 = Y, dmu(dmu) global malmq2 X1 X2 = Y, dmu(dmu) seq ort(o) fgnz malmq2 X1 X2 = Y, dmu(dmu) ort(o) rd sav(tfp_result,replace) 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 26

  27. VI. Malmquist Luenberger Productivity Index (MLPI) First proposed by Chung et al. (1997), MLPI allows to estimate productivity changes while accounting for generation of undesirable products (e.g., pollution) along with desirable products Chung, Y. H., Fare, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: a directional distance function approach. Journal of Environmental Management, 51, 229 240. Based on radial directional distance function (DDF) Provides a decomposition of productivity change into its sources, i.e., efficiency change and technology change Assumption: same as MPI, along with weak disposability of undesirable output 1+ ????,??,?? 1+ ??+1??+1,??+1,??+1 1+ ????+1,??+1,??+1 1+ ??+1??,??,?? 1+ ????,??,?? ?? =1+ ??+1??+1,??+1,??+1 ?,?+ 1 Technical Change Efficiency Change 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 27

  28. Malmquist Luenberger Productivity Index The directional vector ( ??, ??, ??) is taken as ( ????, ???, ???) alternatively, putting the values of (p, q), we can obtain the required own- period and cross-period below: ??+???+?, ??+?, ??+?, ??,??, ?? = ???? ?,?? . By s.?. ? ?????+? DDFs as ??+? ????+? ??? ?? = 1, ? ???? ??? ??=1 ?,? = (0,0) for solving ????,??,?? ? ?????+? ??+?+ ????+? ?? ? = 1, ? for solving ?? ?,? = (1,1) ??+1 ??+1,??+1,??+1 ??? ??=1 ? for solving ?????+?= ??+? ????+? ?? ?,? = (0,1) ??+1 ??,??,?? ? = 1, ? ??? ?? ??=1 ?,? = (1,0) for solving ????+1,??+1,??+1 ??? 0 ?? = 1, ..,? 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 28

  29. MLPI Model: Application in STATA Technical information: Available for Stata 16 and above (installation required (Wang et al., 2022)) Syntax gtfpch inputvars = desirable_outputvars: undesirable_outputvars [ if ] [ in ], dmu (varname) luenberger ort (string) gx (varlist) gy (varlist) gb (varlist) nonradial wmat (name) window(#) biennial sequential global fgnz rd [ other options] Specification: Same as for DDF model 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 29

  30. TFPCH using MLPI: Application in Stata DMU Year D1 D2 D3 D4 D5 D6 D7 D8 D1 D2 D3 D4 D5 D6 D7 D8 X1 327 521 227 X2 67 98 105 Y B 2000 2000 2000 2000 1333 425 2000 1113 162 2000 530 2000 1104 194 2000 751 2001 397 2001 499 2001 227 2001 1339 376 2001 1130 187 2001 605 2001 948 2001 746 1097 1678 1995 1517 2817 21733 3124 1565 2844 1009 3248 2221 2404 2655 1403 1813 2120 1698 3261 27987 3476 1784 3156 1054 3520 2486 2738 3073 989 303 111 94 72 105 115 917 337 119 193 96 gtfpch X1 X2 = Y:B, dmu(dmu) nonradialsaving(ddf_result) gtfpch X1 X2 = Y:B, dmu(dmu) seqential ort(input) leunberger saving(ddf_result, replace) 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 30

  31. Parametric Approaches to Frontier Analysis Stochastic Frontier Models Cross-Sectional Models Panel Data Models Aigner et al. (1977)Model Panel DataTime- invariant Models Panel DataTime Variant Models Meeusen and van den Broeck (1977) Model Schmidt and Sickles (1984) FE Model Kumbhakar (1990) Stevenson(1980) Model Schmidt and Sickles (1984) RE Model Battese and Coelli (1992) Battese and Coelli (1995) Greene (2003) Model Pitt and Lee (1981) Battese and Coelli (1988)

  32. Stochastic Frontier Analysis (SFA) Popular parametric approach for estimating efficiency and productivity. SFA allows the deviation from the frontier and decomposes as; one is the random error ???and other is technical inefficiency ???. Aigner, Lovell and Schmidt (1977) and Meeusen and van den Broeck (1977) independently proposed the stochastic frontier production function model of the form. (Assuming Cobb-Douglas functional form ) ?????= ?0+ ?1?????+ ??? l????= ?0+ ?1?????+ (?? ?= ?? ? ?? ?) ?? ? ?? ? DeterministicComponent noise inefficiency Here, ???is the output, ???is the vector of inputs, is vector of technological parameters to be estimated, ???= ??? ???is the composite error that has two components. ???that accounts for random disturbance and ???that accounts technical inefficiency.

  33. Observed Output ???????? ????????? ?????? TE = ( + ?????) ??? ???? =? ? ? ? ? = ? ? ??? + ??? + ? ?? ? ??? +? ? ? TE = ? = ? ? + ? ? ? ? ?? 0 1 0 1 ?(?+??????) ???? ? ? ? ? 0 1 0 1

  34. SFA: Cross-Sectional Models I.Aigner et al. (1977) Model (Normal-Half Normal Model) ???? ?= ?0+ ?1???? ?+ ?? ? ?? ? Assumptions 1. vi(random error) is assumed to be normally distributed, vi~iidN(0, ?2) 2. u (technical inefficiency) which is assumed to be half normally distributed, u~i iid?+ i 3. viis independent of ui 4. Assuming Cobb-Douglas functional form, where ???is the output, ???is the vector of inputs, is ? (0, ?2) ? vector of technological parameters to be estimated. To estimate , Aigner et al. used maximum likelihood estimation and parametrized the log- likelihood function for the normal-half normal model. ??2 1 2?2 ? ?2 lnL(?|?,?,?) = ?ln ???( ?? ?? ?) + ? ? ? =1 ??=1 ?? 2 2 ? , ?2= ?2+ ?2, and ?. is ? ? ?? ? ?? where, ? = v - u ,? is variance of composite error term , ? = ?2 i i ? ? ? the cumulative distributive function (cdf) of the standard normal variate. Aigner, D., Lovell, C.K. and Schmidt, P., 1977. Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6(1), pp.21-37.

  35. SFA in Stata Stata package- frontier Technical Information: Available for Stata 15 and above (no installation required) Syntax frontier depvar[indepvars], [options] Specification depvar = dependent variable indepvars= independent variables [options] distribution(hnormal)- half-normal distribution for the inefficiency term distribution(exponential) -exponential distribution for the inefficiency term distribution(tnormal)- truncated-normal distribution for the inefficiency term Post Estimation Commands for predicting inefficiency of each firm. predict (file_name), u (For predicting inefficiency of each firm) predict (file_name), te (For predicting efficiency of each firm)

  36. Results from Aigner et al. (1977) Model using frontier te i 1 2 3 4 5 6 7 8 9 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 y x1 x2 ineff 0.161 0.855 0.087 0.918 0.504 0.608 0.179 0.840 0.110 0.898 0.166 0.851 0.278 0.762 0.177 0.841 0.073 0.931 0.123 0.887 0.368 0.696 0.056 0.947 0.227 0.801 0.135 0.877 0.205 0.819 15.131 9.416 35.134 26.309 4.643 77.297 6.886 5.095 89.799 11.168 4.935 35.698 16.605 8.717 27.878 10.897 1.066 92.174 8.239 0.258 97.907 19.203 6.334 82.084 16.032 2.35 38.876 12.434 1.076 81.761 2.676 3.432 29.232 4.033 55.096 16.58 7.975 12.903 7.604 10.618 0.344 10 11 12 13 14 15 9.476 73.13 24.35 65.38 Source: Coelli, T. (1996).Aguide to Frontier 4.1:Acomputer program for stochastic frontier production function and cost function estimation. Department of Econometrics University of New England Armidale NSW, 2351

  37. Contd.. Stata package sfcross by Belloti et al. (2013) Belotti, F., Daidone, S., Ilardi, G. and Atella, V (2013), Stochastic frontier analysis using Stata, Stata Journal, 13, (4), 718-758 Technical Information: Available for Stata 15 and above (installation required) Syntax sfcross depvar [indepvars], [options] Specification depvar = Dependent Variable Indepvars = List of independent variables [options] distribution(hnormal)-half-normal distribution for the inefficiency term distribution(exponential)-exponential distribution for the inefficiency term distribution(tnormal)-truncated-normal distribution for the inefficiency term Post Estimation Commands for predicting efficiency and inefficiency of each firm. predict (file_name), u (For predicting inefficiency through Batesse and Coelli, 1988 Method) predict (file_name), bc (For predicting efficiency through Batesseand Coelli,1988 Method ) predict (file_name), jlms (For predicting efficiency through Jondrow et al., 1982 Method)

  38. Results from Aigner et al. (1977) Model using sfcross sfcross lny lnx1 lnx2, distribution(hnormal) predict ineff, u predict eff_jlms, jlms predict eff_bc, bc

  39. II. Meeusen and Van den Broeck (MB) (1977) (Normal- Exponential Model) Meeusen and Van den Broeck (MB) (1977) ?????= ?0+ ?1?????+ ?? ? ?? ? Assumptions (technical inefficiency) which is assumed to be exponentially ??? distributed u~?????(? ? ) ?2) i ? T o estimate , Meeusen and van den Broeck (MB) used MLE and parametrized the log-likelihood function for the Normal- Exponential model. ln L= ??? = ?????+ ? ?2 2?2 ??? ? + ??? ? + ? ??? ? ? ? ? ? where, ???= v - u is the cumulative distributive function (cdf) of the standard normal variate, ? = ? ?? ? ? , ? = ??? ?2 ? and N is number of producers. ,?2is variance of composite error term , ?2= ?2+ ?2, ?. i i ? ? ? ? Meeusen, W. and van Den Broeck, J. (1977). Efficiency estimation from Cobb-Douglas production functions with composed error. International Economic Review, pp.435-444.

  40. Results from Meeusen and Van den Broeck (MB) (1977) predicteff,te predicteff,bc

  41. III. Stevenson (1980) Model (Normal-Truncated Model) Model is formulated as ?????= ?0+ ?1?????+ ?? ? ?? ? Assumptions ???(technical inefficiency) which is assumed to truncated normally distributed, ui~iid (?, ?2) ? ?+ To estimate , Stevenson (1980) Model used maximum likelihood estimation and parametrized the log-likelihood function for the Normal-Truncated Normal Model. ? ? ????? ??? ???+? ? 1 ? ? + ??? ln? = ???? ???? ? ? ? ??? ? 2 where, (mode) is additional parameter to be estimated, ?? ?= v - u of composite error term , ,?2is variance i i ? = ?2+ ?2 , ?. is the cumulative distributive function (cdf) of the standard normal variate, and N is number of producers. Source: Stevenson, R.E., 1980. Likelihood estimation. Journal of Econometrics, 13(1), pp.57-66. ?2 ? ? ? functions for generalized stochastic frontier

  42. Results from Stevenson (1980) Model predicteff,te predicteff,bc

  43. Results of BC, JLMS, MB, and Stevensons Models i t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 lny ln x1 0.973866 0.666799 0.707144 0.693287 0.940367 0.027757 0.099681 0.801678 0.371068 0.031812 0.535547 0.605628 0.901731 0.881042 0.369958 ln x2 1.545728 1.888163 1.953272 1.552644 1.445262 1.964608 1.990814 1.914259 1.589682 1.912546 0.976625 1.74112 1.864096 1.386499 1.815445 jlms 0.8510 0.9163 0.6041 0.8360 0.8954 0.8469 0.7573 0.8375 0.9294 0.8838 0.6924 0.9457 0.7969 0.8738 0.8150 bc eff_mb 0.9028 0.9404 0.6389 0.8949 0.9297 0.9027 0.8326 0.8919 0.9493 0.9246 0.7728 0.9576 0.8611 0.9182 0.8803 stevenson 0.8880 0.9343 0.6288 0.8774 0.9203 0.8869 0.8075 0.8769 0.9439 0.9136 0.7392 0.9545 0.8419 0.9055 0.8606 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1.179868 1.420104 0.837967 1.047975 1.220239 1.037307 0.915875 1.283369 1.204988 1.094611 0.427486 1.465859 1.219585 1.110691 1.026043 0.8546 0.9183 0.6077 0.8398 0.8979 0.8505 0.7616 0.8413 0.9309 0.8867 0.6965 0.9467 0.8011 0.8769 0.8190

  44. IV. Time-Invariant Stochastic Frontier Models Schmidt and Sickles (1984) proposed both Time invariant Stochastic Frontier Fixed effect and Random effect Models. Fixed Effects Model + ?1? + ???? ??? ?+ ?1? + ???? ???? ? = ????= it 0 it ? ? Here, i= 0 - ui is the individual effects of fixed-effects model. In FE-Model, ???is assumed to be correlated with the regressor or with ???? Random Effects Model + ??????????+ ???? [??? ? ???] ??????= ? + ??????????+ ???? ? ??????= ?0 ? ??? 0 ? ? Source: Schmidt, P. and Sickles, R.C., 1984. Production frontiers and panel data. Journal of Business & Economic Statistics, 2(4), pp.367-374.

  45. Panel Data SFA Models in STATA Stata packages: xtfrontier and sfpanel Technical Information: Available for STATA 15 and above (no installation required) Syntax xtfrontier depvar [indepvars], ti [ti_options] Syntax sfpanel depvar [indepvars], model () [model_options] Specification depvar = Dependent Variable indepvars= List of independent variables Specification depvar = Dependent Variable indepvars = List of independent variables [options] ti - use time invariant model cost - fit cost frontier model no constant - suppress constant term. constraints- applyspecific linear constraints [model_options] 1. fe- fixed effects model of SS (1984) 2. regls random effects model of SS (1984) 3. pl81 - Pitt and Lee (1981) model 4. bc88 - Battese and Coelli (1988) model Post Estimation Commands for predicting inefficiency of each firm. Post Estimation Commands for predicting efficiency and inefficiency ofeach firm. predict (file_name),u (inefficiency through BS 1988) predict (file_name),bc (efficiency through BS 1988) predict (file_name),jlms(efficiency through Jondrow et al. 1982 ) predict (file_name), u predict (file_name), te (efficiency of each firm) (inefficiency of each firm)

  46. xtfrontier and sfpanel packages for time-invariant models: Schmidt and Sickles (1984) xtset i t xtfrontier y x1 x2, ti predictineff,jlms predict eff,te

  47. Other Stochastic Frontier Time-Invariant Models Pitt and Lee (1981) Model Battese and Coelli (1988) Model yit = 0 + 1 ? + vit- ui yit = 0+ 1? + vit- ui it it Assumptions: ui(technical inefficiency) which is assumed to be truncated normal distributed, u ~ (0, ?2) and constant over time. ??? = ?(? 1) 2 2 ? ?? ? ? 2?2 Assumptions: ui(technical inefficiency) which is assumed to be half normally distributed, ui~iid over time ?(? 1) 2 ln 1 ? (0, ??) and constant 2 i iid?+ ? ?+ ? ? ?? 2 ?2 ln ?2+ ??2 + ??? 1 ? ? ? ? ? 2 ?2 ln ?2+ ??2+ ? ??? ?? ? ? ? 2?2 ??? = 2 ?????? ?? ? ? 1 ? ? ? ? ?? ? + ln 1 ? + ? ?? 2 2 ?? ? ? ?? ? ? ? 2 2 where ? ?? ??? ??? ??? ? ?2+??2 2 1 ? ? ? ? 2 = + ? ? ? 2 ? ? ??????? 1 where ? = , ? = and ? ? ? ? ? ? ? ? ?2= ?2+??2 ? ? ? ? ?2?2 ?2+??2 ? Pitt, M.M. and Lee, L.F. (1981). The measurement and sources of technical inefficiency in the Indonesian weaving industry. Journal of Development Economics, 9(1), pp.43-64.) ? ? ? ? ? Battese, G.E. and Coelli, T.J., 1988. Prediction of firm- level technical efficiencies with a generalized frontier production function and panel data. Journal of econometrics, 38(3), pp.387-399)

  48. Other Stochastic Frontier Time-Invariant Models Model Name Pitt and Lee (1981) half normally distributed Battese and Coelli (1988) truncated normal distributed Syntax Main Command sfpanel depvar [indepvars], model () [model_options] sfpanel depvar [indepvars], model (pl81) sfpanel depvar [indepvars], model () [model_options] sfpanel depvar [indepvars], model (bc88) 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 48

  49. V. Time-Variant Stochastic Frontier Models Stochastic Frontier Time-Variant Models Kumbhakar (1990) [indepvars], model () [model_options] sfpanel depvar sfpanel depvar [indepvars], model (kumb90) Battese and Coelli (1992) sfpanel depvar [indepvars], model () [model_options] sfpanel depvar [indepvars], model (bc92) Battese and Coelli (1995) sfpanel depvar [indepvars], model () [model_options] sfpanel depvar [indepvars], model (bc95) 30/11/2023 IndiaStataUser Meeting2023_RachitaGulati 49

  50. Thanks 30/11/2023 IndiaStata User Meeting2023_RachitaGulati 50

More Related Content

giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#