Geometrical Constructions and Tangents Creation

ب‍
‍س‍
‍م
 
الله
 
ا
ل‍
‍ر
ح‍
‍م‍
‍ن
 
ا
ل‍
‍ر
ح‍
‍ي‍
‍م
G
e
o
m
e
t
r
i
c
a
l
 
C
o
n
s
t
r
u
c
t
i
o
n
s
 Bisect a Line (or Arc)
 
1. Draw two arcs of any radius greater than half-length of
    the line with the centers at the ends of the line.
 
2. Join the intersection points of the arcs with a line.
 
(
n
o
t
 
t
o
 
s
c
a
l
e
)
 
3. Locate the midpoint.
Bisect an Angle
 
2. Draw the arcs of any radius from the intersection
    points between the previous arc and the lines.
 
3. Draw the line.
 
1. Draw an arc of any radius whose centers at the vertex.
 
(not to scale)
Dividing a Line into a Number of Equal
Parts
A
d
j
a
c
e
n
t
-
s
i
d
e
s
 
m
e
t
h
o
d
T
o
 
d
r
a
w
 
t
h
e
 
l
i
n
e
 
p
e
r
p
e
n
d
i
c
u
l
a
r
 
t
o
 
a
 
g
i
v
e
n
 
l
i
n
e
 
f
r
o
m
 
a
 
p
o
i
n
t
 
n
o
t
 
o
n
 
t
h
e
 
l
i
n
e
T
o
 
d
r
a
w
 
t
h
e
 
l
i
n
e
 
p
e
r
p
e
n
d
i
c
u
l
a
r
 
t
o
 
a
 
g
i
v
e
n
 
l
i
n
e
 
f
r
o
m
 
a
 
p
o
i
n
t
 
n
o
t
 
o
n
 
t
h
e
 
l
i
n
e
A
d
j
a
c
e
n
t
-
s
i
d
e
s
 
m
e
t
h
o
d
 
R
e
p
e
a
t
U
s
i
n
g
 
c
o
m
p
a
s
s
T
o
 
d
r
a
w
 
t
h
e
 
l
i
n
e
 
p
e
r
p
e
n
d
i
c
u
l
a
r
 
t
o
 
a
 
g
i
v
e
n
 
l
i
n
e
 
f
r
o
m
 
a
 
p
o
i
n
t
 
n
o
t
 
o
n
 
t
h
e
 
l
i
n
e
 
R
e
p
e
a
t
S
t
r
a
i
g
h
t
 
L
i
n
e
 
T
a
n
g
e
n
t
s
 
t
o
 
a
 
C
i
r
c
l
e
 
f
r
o
m
 
a
n
 
E
x
t
e
r
n
a
l
 
p
o
i
n
t
T
a
n
g
e
n
t
s
-
 
C
o
n
s
t
r
u
c
t
i
o
n
R
r
R-r
R-r
C
o
m
m
o
n
 
P
a
r
a
l
l
e
l
 
S
t
r
a
i
g
h
t
 
L
i
n
e
 
T
a
n
g
e
n
t
s
 
t
o
 
 
T
w
o
 
C
i
r
c
l
e
s
 
o
f
R
a
d
i
u
s
 
R
 
a
n
d
 
r
T
a
n
g
e
n
t
s
-
 
C
o
n
s
t
r
u
c
t
i
o
n
R
r
R+r
R+r
C
o
m
m
o
n
 
C
r
o
s
s
 
S
t
r
a
i
g
h
t
 
L
i
n
e
 
T
a
n
g
e
n
t
s
 
t
o
 
 
T
w
o
 
C
i
r
c
l
e
s
 
o
f
 
R
a
d
i
u
s
R
 
a
n
d
 
r
T
a
n
g
e
n
t
s
-
 
C
o
n
s
t
r
u
c
t
i
o
n
F
I
L
L
E
T
 
 
A
N
D
 
 
R
O
U
N
D
 
F
i
l
l
e
t
 
R
o
u
n
d
 
R
o
u
n
d
R
R
R
R
C
i
r
c
u
l
a
r
 
T
a
n
g
e
n
t
 
o
f
 
R
a
d
i
u
s
 
R
 
B
e
t
w
e
e
n
 
a
 
P
o
i
n
t
 
t
o
 
a
 
S
t
r
a
i
g
h
t
L
i
n
e
T
a
n
g
e
n
t
s
-
 
C
o
n
s
t
r
u
c
t
i
o
n
R
R
R
R
R
C
i
r
c
u
l
a
r
 
T
a
n
g
e
n
t
 
o
f
 
R
a
d
i
u
s
 
R
 
B
e
t
w
e
e
n
 
T
w
o
 
S
t
r
a
i
g
h
t
 
L
i
n
e
s
 
a
t
a
n
 
A
n
g
l
e
T
a
n
g
e
n
t
s
-
 
C
o
n
s
t
r
u
c
t
i
o
n
T
o
 
d
r
a
w
 
a
n
 
a
r
c
 
o
f
 
g
i
v
e
n
 
r
a
d
i
u
s
 
t
a
n
g
e
n
t
 
t
o
 
t
w
o
 
l
i
n
e
s
G
i
v
e
n
a
r
c
 
r
a
d
i
u
s
 
r
R
R
R
R+r
r
R
R
R
I
n
t
e
r
n
a
l
 
C
i
r
c
u
l
a
r
 
T
a
n
g
e
n
t
 
o
f
 
R
a
d
i
u
s
 
R
 
B
e
t
w
e
e
n
 
a
 
S
t
r
a
i
g
h
t
L
i
n
e
 
a
n
d
 
a
 
C
i
r
c
l
e
 
o
f
 
R
a
d
i
u
s
 
r
T
a
n
g
e
n
t
s
-
 
C
o
n
s
t
r
u
c
t
i
o
n
R
R
R
R-r
r
R
R
R
R-r
E
x
t
e
r
n
a
l
 
C
i
r
c
u
l
a
r
 
T
a
n
g
e
n
t
 
o
f
 
R
a
d
i
u
s
 
R
 
B
e
t
w
e
e
n
 
a
 
S
t
r
a
i
g
h
t
L
i
n
e
 
a
n
d
 
a
 
C
i
r
c
l
e
 
o
f
 
R
a
d
i
u
s
 
r
T
a
n
g
e
n
t
s
-
 
C
o
n
s
t
r
u
c
t
i
o
n
F
I
L
L
E
T
 
 
A
N
D
 
 
R
O
U
N
D
T
o
 
d
r
a
w
 
t
h
e
 
a
r
c
,
 
w
e
 
m
u
s
t
 
f
i
n
d
 
t
h
e
 
l
o
c
a
t
i
o
n
 
o
f
 
t
h
e
 
c
e
n
t
e
r
 
o
f
 
t
h
a
t
 
a
r
c
.
H
o
w
 
d
o
 
w
e
 
f
i
n
d
 
t
h
e
 
c
e
n
t
e
r
 
o
f
 
t
h
e
 
a
r
c
?
D
r
a
w
 
a
n
 
a
r
c
 
o
f
 
g
i
v
e
n
 
r
a
d
i
u
s
 
t
a
n
g
e
n
t
 
t
o
 
t
w
o
 
p
e
r
p
e
n
d
i
c
u
l
a
r
 
l
i
n
e
s
G
i
v
e
n
arc radius r
D
r
a
w
 
a
n
 
a
r
c
 
o
f
 
g
i
v
e
n
 
r
a
d
i
u
s
 
t
a
n
g
e
n
t
 
t
o
 
t
w
o
 
p
e
r
p
e
n
d
i
c
u
l
a
r
 
l
i
n
e
s
G
i
v
e
n
arc radius r
 
center of the arc
 
S
t
a
r
t
i
n
g
 
p
o
i
n
t
 
E
n
d
i
n
g
 
p
o
i
n
t
Construct an Arc Tangent to a Line
and an Arc
 
Given line 
AB 
and arc 
CD.
 
Strike arcs 
R
1
 (given radius).
 
Draw construction arc parallel to
given arc, with center 
O.
 
Draw construction line parallel to
given line 
AB.
 
From intersection 
E
, draw 
EO
 to get
tangent point 
T
1
, and drop
perpendicular to given line to get
point of tangency 
T
2
 .
 
Draw tangent arc 
R
 from 
T
1
to 
T
2
 
with center 
E.
 
E
 
T
1
 
T
2
W
h
e
n
 
c
i
r
c
l
e
 
t
a
n
g
e
n
t
 
t
o
 
o
t
h
e
r
 
c
i
r
c
l
e
C
1
C
2
T
a
n
g
e
n
t
 
p
o
i
n
t
R
1
R
2
R
1
 
+
 
R
2
T
h
e
 
c
e
n
t
e
r
 
o
f
 
t
w
o
 
c
i
r
c
l
e
s
 
a
n
d
 
t
a
n
g
e
n
t
 
p
o
i
n
t
 
l
i
e
 
o
n
 
t
h
e
 
s
a
m
e
s
t
r
a
i
g
h
t
 
l
i
n
e
 
!
!
!
D
r
a
w
 
a
 
c
i
r
c
l
e
 
t
a
n
g
e
n
t
 
t
o
 
t
w
o
 
c
i
r
c
l
e
s
 
I
G
i
v
e
n
+
C
1
G
i
v
e
n
T
w
o
 
c
i
r
c
l
e
s
 
a
n
d
 
t
h
e
 
r
a
d
i
u
s
 
o
f
 
t
h
e
 
t
h
i
r
d
 
c
i
r
c
l
e
 
=
 
R
D
r
a
w
 
a
 
c
i
r
c
l
e
 
t
a
n
g
e
n
t
 
t
o
 
t
w
o
 
c
i
r
c
l
e
s
 
I
+
C
2
+
+
C
1
C
2
G
i
v
e
n
T
w
o
 
c
i
r
c
l
e
s
 
a
n
d
 
t
h
e
 
r
a
d
i
u
s
 
o
f
 
t
h
e
 
t
h
i
r
d
 
c
i
r
c
l
e
 
=
 
R
D
r
a
w
 
a
 
c
i
r
c
l
e
 
t
a
n
g
e
n
t
 
t
o
 
t
w
o
 
c
i
r
c
l
e
s
 
I
 
R
e
p
e
a
t
C
2
R
2
W
h
e
n
 
c
i
r
c
l
e
 
t
a
n
g
e
n
t
 
t
o
 
o
t
h
e
r
 
c
i
r
c
l
e
C
1
T
a
n
g
e
n
t
 
p
o
i
n
t
R
1
T
h
e
 
c
e
n
t
e
r
 
o
f
 
t
w
o
 
c
i
r
c
l
e
s
 
a
n
d
 
t
a
n
g
e
n
t
 
p
o
i
n
t
 
m
u
s
t
 
l
i
e
 
o
n
 
t
h
e
s
a
m
e
 
s
t
r
a
i
g
h
t
 
l
i
n
e
 
!
!
!
R
2
 
 
R
1
G
i
v
e
n
D
r
a
w
 
a
 
c
i
r
c
l
e
 
t
a
n
g
e
n
t
 
t
o
 
t
w
o
 
c
i
r
c
l
e
s
 
I
I
+
+
C
1
C
2
D
r
a
w
 
a
 
c
i
r
c
l
e
 
t
a
n
g
e
n
t
 
t
o
 
t
w
o
 
c
i
r
c
l
e
s
 
I
I
G
i
v
e
n
T
w
o
 
c
i
r
c
l
e
s
 
a
n
d
 
t
h
e
 
r
a
d
i
u
s
 
o
f
 
t
h
e
 
t
h
i
r
d
 
c
i
r
c
l
e
 
=
 
R
+
+
C
1
C
2
D
r
a
w
 
a
 
c
i
r
c
l
e
 
t
a
n
g
e
n
t
 
t
o
 
t
w
o
 
c
i
r
c
l
e
s
 
I
I
G
i
v
e
n
T
w
o
 
c
i
r
c
l
e
s
 
a
n
d
 
t
h
e
 
r
a
d
i
u
s
 
o
f
 
t
h
e
 
t
h
i
r
d
 
c
i
r
c
l
e
 
=
 
R
 
R
e
p
e
a
t
D
r
a
w
 
a
 
c
i
r
c
l
e
 
t
a
n
g
e
n
t
 
t
o
 
t
w
o
 
c
i
r
c
l
e
s
 
I
I
I
G
i
v
e
n
T
w
o
 
c
i
r
c
l
e
s
 
a
n
d
 
t
h
e
 
r
a
d
i
u
s
 
o
f
 
t
h
e
 
t
h
i
r
d
 
c
i
r
c
l
e
 
=
 
R
T
a
n
g
e
n
t
s
-
 
C
W
 
1
Geometric Constructions
R=44
R=18
R=16+19=35
R=16
R=8
R=22-5=17
R=22+5=27
R=19
R=18+22=40
R=44+22=66
R=19
R=19
END
Construct a Hexagon
given distance Across Flats (Circumscribed)
 
Given distance across the
flats of a hexagon, draw
centerlines and a circle
with a diameter equal to
the distance across flats
 
With parallel edge and
30
°
 – 60 
°
 triangle, draw
the tangents
Construct a Hexagon
given distance Across Corners (Inscribed)
 
Given distance 
AB
 across the corners, draw a circle
with 
AB
 as the diameter
 
With 
A
 and 
B
 as centers and
the same radius, draw arcs
to intersect the circle at
points 
C
, 
D
, 
E
, and 
F
 
Connect the points to
complete the hexagon
Construct an Octagon
Across Flats (Circumscribed)
 
Given the distance across the flats,
draw centerlines and a circle with a
diameter equal to the distance across
flats
 
1
 
2
 
3
 
4
 
5
 
6
 
7
 
8
 
With a parallel edge and 45
triangle, draw lines tangent to
the circle in the order shown to
complete the octagon
C
o
n
s
t
r
u
c
t
 
a
n
 
O
c
t
a
g
o
n
A
c
r
o
s
s
 
C
o
r
n
e
r
s
 
(
I
n
s
c
r
i
b
e
d
)
 
Given the distance across the
corners, draw centerlines
 AB
and
 CD
 and a circle with a
diameter equal to the distance
across corners
 
Connect the points to
complete the octagon
 
With the T-square and 45
°
triangle, draw diagonals 
EF
and 
GH
General Method to Draw any Polygon
Note:
See Page (29) of Your Textbook
D
r
a
w
 
a
n
 
A
p
p
r
o
x
i
m
a
t
e
 
E
l
l
i
p
s
e
G
i
v
e
n
M
a
j
o
r
 
a
n
d
 
m
i
n
o
r
 
a
x
e
s
D
r
a
w
 
a
n
 
a
p
p
r
o
x
i
m
a
t
e
 
e
l
l
i
p
s
e
G
i
v
e
n
M
a
j
o
r
 
a
n
d
 
m
i
n
o
r
 
a
x
e
s
 
R
e
p
e
a
t
A
B
C
D
E
F
G
H
O
K
J
Note:(Ellipse Drawing)
Also see Figure(3.24), page(43)
from textbook
END
ط‍
‍ر
ي‍
‍ق‍
‍ة
 
ر
س‍
‍م
 
ش‍
‍ك‍
‍ل
 
س‍
‍د
ا
س‍
‍ي
ط‍
‍ر
ي‍
‍ق‍
‍ة
 
ر
س‍
‍م
 
ش‍
‍ك‍
‍ل
 
خ‍
‍م‍
‍ا
س‍
‍ي
ط‍
‍ر
ي‍
‍ق‍
‍ة
 
ع‍
‍ا
م‍
‍ة
 
ل‍
‍ر
س‍
‍م
 
ا
ى
 
م‍
‍ض‍
‍ل‍
‍ع
 
a
 
b
 
c
4
c
5
4
6
5
7
d
5
e
5
 
c
7
 
d
7
 
e
7
 
f
7
 
g
7
Slide Note
Embed
Share

In this collection, you will find detailed explanations and visual guides on various geometrical constructions such as bisecting lines and angles, dividing lines into equal parts, drawing perpendicular lines, constructing tangents to circles, and filleting sharp corners. Explore step-by-step instructions and diagrams to enhance your geometric skills and understanding.

  • Geometrical Constructions
  • Tangents
  • Drawing Techniques
  • Geometry Basics
  • Visual Guides

Uploaded on Feb 18, 2025 | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.

E N D

Presentation Transcript


  1. Geometrical Constructions

  2. Bisect a Line (or Arc) 1. Draw two arcs of any radius greater than half-length of the line with the centers at the ends of the line. 2. Join the intersection points of the arcs with a line. 3. Locate the midpoint. Given A A r1 r1 B B (not to scale)

  3. Bisect an Angle 1. Draw an arc of any radius whose centers at the vertex. 2. Draw the arcs of any radius from the intersection points between the previous arc and the lines. 3. Draw the line. A (not to scale) Given A B r2 r1 B r2 C C

  4. Dividing a Line into a Number of Equal Parts

  5. To draw the line perpendicular to a given line from a point not on the line Adjacent-sides method +C

  6. To draw the line perpendicular to a given line from a point not on the line Adjacent-sides method +C Repeat

  7. To draw the line perpendicular to a given line from a point not on the line Using compass + C r2 D r2 A r1 B Repeat

  8. Tangents- Construction Straight Line Tangents to a Circle from an External point

  9. Tangents- Construction Common Parallel Straight Line Tangents to Two Circles of Radius R and r r R

  10. Tangents- Construction Common Cross Straight Line Tangents to Two Circles of Radius R and r r R

  11. FILLET AND ROUND Round Sharp corner Fillet Round

  12. Tangents- Construction Circular Tangent of Radius R Between a Point to a Straight Line R R R R

  13. Tangents- Construction Circular Tangent of Radius R Between Two Straight Lines at an Angle R R R R R

  14. To draw an arc of given radius tangent to two lines Given arc radius r T.P.1 T.P.2

  15. Tangents- Construction Internal Circular Tangent of Radius R Between a Straight Line and a Circle of Radius r R+r r R R R R R R

  16. Tangents- Construction External Circular Tangent of Radius R Between a Straight Line and a Circle of Radius r R-r r R-r R R R R R R

  17. FILLET AND ROUND To draw the arc, we must find the location of the center of that arc. How do we find the center of the arc?

  18. Draw an arc of given radius tangent to two perpendicular lines Given arc radius r r r

  19. Draw an arc of given radius tangent to two perpendicular lines Given arc radius r center of the arc Starting point Ending point

  20. Construct an Arc Tangent to a Line and an Arc Given line AB and arc CD. Strike arcs R1(given radius). Draw construction arc parallel to given arc, with center O. Draw construction line parallel to given line AB. From intersection E, draw EO to get tangent point T1, and drop perpendicular to given line to get point of tangency T2. Draw tangent arc R from T1 to T2with center E. C E T1 R1 O A B T2 D

  21. When circle tangent to other circle Tangent point R1 C1 R2 C2 The center of two circles and tangent point lie on the same straight line !!!

  22. Draw a circle tangent to two circles I Given C+ + C2 + C1 Example

  23. Draw a circle tangent to two circles I GivenTwo circles and the radius of the third circle = R + C2 + C1

  24. Draw a circle tangent to two circles I GivenTwo circles and the radius of the third circle = R R + R2 center of the arc R + R1 C R R2 R1 + C2 + C1 Repeat

  25. When circle tangent to other circle Tangent point R1 R2 C1 C2 The center of two circles and tangent point must lie on the same straight line !!!

  26. Draw a circle tangent to two circles II Given + C2 + C1 C+ Example

  27. Draw a circle tangent to two circles II GivenTwo circles and the radius of the third circle = R + + C2 C1

  28. Draw a circle tangent to two circles II GivenTwo circles and the radius of the third circle = R R R2 R1 + + C2 C1 R R2 C R R1 Repeat

  29. Draw a circle tangent to two circles III GivenTwo circles and the radius of the third circle = R R2 R1 + C2 C1 + R R1 R + R2 C

  30. Tangents- CW 1 85 85

  31. R=18+22=40 R=44+22=66

  32. END

  33. Construct a Hexagon given distance Across Flats (Circumscribed) Given distance across the flats of a hexagon, draw centerlines and a circle with a diameter equal to the distance across flats With parallel edge and 30 60 triangle, draw the tangents

  34. Construct a Hexagon given distance Across Corners (Inscribed) Given distance AB across the corners, draw a circle with AB as the diameter C D With A and B as centers and the same radius, draw arcs to intersect the circle at points C, D, E, and F A B Connect the points to complete the hexagon F E

  35. Construct an Octagon Across Flats (Circumscribed) Given the distance across the flats, draw centerlines and a circle with a diameter equal to the distance across flats 1 5 7 With a parallel edge and 45 triangle, draw lines tangent to the circle in the order shown to complete the octagon 3 4 8 6 2

  36. Construct an Octagon Across Corners (Inscribed) Given the distance across the corners, draw centerlines AB and CD and a circle with a diameter equal to the distance across corners C G E B A With the T-square and 45 triangle, draw diagonals EF and GH H F D Connect the points to complete the octagon

  37. General Method to Draw any Polygon Note: See Page (29) of Your Textbook

  38. Draw an Approximate Ellipse GivenMajor and minor axes

  39. Draw an approximate ellipse GivenMajor and minor axes J E C F A B G O K D H Repeat

  40. Note:(Ellipse Drawing) Also see Figure(3.24), page(43) from textbook

  41. END

  42. a b

  43. a b

  44. e7 f7 d7 d5 c4 e5 7 c5 6 5 g7 c7 4 b a

More Related Content

giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#