Description of the spectra of the lowest states for a chain

 
Description of the spectra of the lowest states for a chain
of 
Zr 
isotopes based on the geometric collective model
 
E. V. Mardyban,
E. A. Kolganova, T. M. Shneidman, R. V. Jolos
 
 
C. Kremer 
et al
.
 
Phys. Rev. Lett. 
117
, 172503 (2016)
 
The evolution of the shape
 can occur with a smooth or abrupt transition from a
spherical to a deformed shape, and there can be a strong or weak mixing of
configurations with different shapes. Such information is contained in the
probabilities of electromagnetic transitions, and a high purity of coexisting forms
was established in 
96
Zr
 
Introduction
 
The collective quadrupole Bohr Hamiltonian including axial degree of freedom can
be written as :
 
Model
 
N
ucleus surface shapes of
various types of deformations
 
Types of collective motion
described by the Bohr Hamiltonian
 
T. Niksic, Z.P. Li,  D. Vretenar, L. Prochniak, J. Meng, and P. Ring, Phys.Rev. C 
79
, 034303 (2009)
N. Gavrielov and A. Leviatan, Phys.Rev. C  
99
, 064324 (2019).
 
Evolution of one dimensional potential
energy without shape coexistence
 
Evolution of one dimensional potential
energy with shape coexistence
 
Model
 
A. Poves, J.Phys. G: Nucl. Part. Phys.  
43
, 024010 (2016).
K. Heyde, J.L. Wood, Rev.Mod.Phys.  
83
, 1467 (2011).
J.L. Wood, K. Heyde, W. Nazarewich, M. Huyse, and P.V. Duppen, Phys. Rep.  
215
, 101 (1992).
K. Heyde, P. Van Isacker, M. Waroquier, J.L. Wood, and R.A.Meyer, Phys. Rep., 
102
, 291 (1983).
 
Model
 
We define a potential energy 
in the form
 
J.E. Garcia-Ramos and K.  Heyde, Phys.Rev. C 
43
, 044315 (2019).
 
Results
 
E. V. Mardyban, E. A. Kolganova, T. M. Shneidman, R. V. Jolos, and N. Pietralla. Phys. Rev. C 
102
, 034308 (2020)
D.A. Sazonov, E.A. Kolganova, T.M. Shneidman, R.V. Jolos, N.Pietralla, and W. Witt, Phys.Rev. C 
99
, 031304(R) (2019).
 
Results
 
E. V. Mardyban, E. A. Kolganova, T. M. Shneidman, R. V. Jolos, and N. Pietralla. Phys. Rev. C 
102
, 034308 (2020)
D.A. Sazonov, E.A. Kolganova, T.M. Shneidman, R.V. Jolos, N.Pietralla, and W. Witt, Phys.Rev. C 
99
, 031304(R) (2019).
 
Results
 
C
alculated (lines) and experimental
(
dots
) energies of the ground states
with angular momentum 0, 2, 4 and 6
 
Calculated (lines) and experimental
(dots) energies of the first excited
states with angular momentum 0, 2, 4,
and 6
 
Calculated (lines) and experimental
(dots) values of the probabilities of
quadrupole transitions between the
lowest states of the 
ground
 band
 
Experimental data taken from 
https://www.nndc.bnl.gov/ensdf/
 
Thank you for attention
!
 
The main results of previous work
s
 are included in
E. V. Mardyban, E. A. Kolganova, T. M. Shneidman, R. V. Jolos, and N. Pietralla, Phys. Rev. C 
102
, 034308 (2020)
D.A. Sazonov, E.A. Kolganova, T.M. Shneidman, R.V. Jolos, N.Pietralla, and W. Witt, Phys. Rev. C 
99
, 031304(R) (2019)
 
-
The spectra of the lowest states of the chain of zirconium isotopes are described based on the geometric collective model
.
 
-
Good agreement with experimental data for excitation energies and 
E2
 transition probabilities was obtained.
 
-
I
t was shown that in the evolution of potential energy there is a phenomenon of shape coexistence.
 
-
There are some deviations for isotopes close to the spherical region due to the specifics of the used model.
 
-
The presented results are preliminary and will be further improved.
 
Conclusion
Slide Note
Embed
Share

The evolution of shape in Zr isotopes is analyzed using the geometric collective model, revealing transitions between spherical and deformed shapes with configurations mixing. The collective quadrupole Bohr Hamiltonian is employed, with deformation parameters determining the nucleus's shape. The study explores the probabilities of electromagnetic transitions and the coexistence of different nuclear forms, highlighting the purity in 96Zr. Various types of deformation and potential energy evolution are discussed, providing insights into the lowest states of Zr isotopes.

  • Zr Isotopes
  • Geometric Collective Model
  • Nuclear Physics
  • Shape Evolution
  • Spectral Analysis

Uploaded on Mar 04, 2025 | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.

E N D

Presentation Transcript


  1. Description of the spectra of the lowest states for a chain of Zr isotopes based on the geometric collective model E. V. Mardyban, E. A. Kolganova, T. M. Shneidman, R. V. Jolos

  2. Introduction The evolution of the shape can occur with a smooth or abrupt transition from a spherical to a deformed shape, and there can be a strong or weak mixing of configurations with different shapes. Such information is contained in the probabilities of electromagnetic transitions, and a high purity of coexisting forms was established in96Zr C. Kremer et al. Phys. Rev. Lett. 117, 172503 (2016)

  3. Model The collective quadrupole Bohr Hamiltonian including axial degree of freedom can be written as : Types of collective motion described by the Bohr Hamiltonian It depends on two deformation parameters ? and ?, which are the coefficients of the expansion of the radius of the nucleus Each coefficient is responsible for a specific shape of the nucleus. The ? is responsible for the deviation from the spherical shape. The ? is responsible for compressing and stretching. Nucleus surface shapes of various types of deformations T. Niksic, Z.P. Li, D. Vretenar, L. Prochniak, J. Meng, and P. Ring, Phys.Rev. C 79, 034303 (2009) N. Gavrielov and A. Leviatan, Phys.Rev. C 99, 064324 (2019).

  4. Model 6 6 3 3 E (MeV) E (MeV) 0 0 -3 -3 0,0 0,1 0,2 0,3 0,4 0,5 0,0 0,1 0,2 0,3 0,4 0,5 b b Evolution of one dimensional potential energy without shape coexistence Evolution of one dimensional potential energy with shape coexistence A. Poves, J.Phys. G: Nucl. Part. Phys. 43, 024010 (2016). K. Heyde, J.L. Wood, Rev.Mod.Phys. 83, 1467 (2011). J.L. Wood, K. Heyde, W. Nazarewich, M. Huyse, and P.V. Duppen, Phys. Rep. 215, 101 (1992). K. Heyde, P. Van Isacker, M. Waroquier, J.L. Wood, and R.A.Meyer, Phys. Rep., 102, 291 (1983).

  5. Model We define a potential energy in the form 60 8 50 8 7 40 6 6 6 30 5 E (MeV) 4 4 20 3 2 10 2 2 0,8 0 0 0,0 0,1 0,3 0,2 0,4 0,0 0,1 0,2 0,3 0,4 0,5 b Influence of the ? addiction J.E. Garcia-Ramos and K. Heyde, Phys.Rev. C 43, 044315 (2019).

  6. Results 96Zr 92Zr 94Zr 60 60 60 g g g 50 50 10 50 10 10 9 9 9,3 40 40 40 8 8 8,6 7 7 30 30 7,9 30 6 6 7,2 5 5 6,5 20 20 20 4 4 5,8 3 3 5,1 10 10 2 10 2 4,4 1 1 3,7 0 0 0 0 0 3,0 0,1 0,2 0,3 b 0,5 0,0 0,4 0,2 0,4 0,6 0,0 0,1 0,3 b 0,5 0,2 0,0 0,1 0,4 0,3 b 10 10 10 9 9 9 8 8 8 7 7 7 6 6 6 E (MeV) E (MeV) E (MeV) 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1 0,0 0,1 0,2 0,3 b 0,4 0,5 0,6 0,0 0,1 0,2 0,3 b 0,4 0,5 0,6 0,0 0,1 0,2 0,3 b 0,4 0,5 0,6 Calculated potential surfaces for Zr isotopes and cuts at ? = 0. E. V. Mardyban, E. A. Kolganova, T. M. Shneidman, R. V. Jolos, and N. Pietralla. Phys. Rev. C 102, 034308 (2020) D.A. Sazonov, E.A. Kolganova, T.M. Shneidman, R.V. Jolos, N.Pietralla, and W. Witt, Phys.Rev. C 99, 031304(R) (2019).

  7. Results 100Zr 98Zr 102Zr 60 60 g g 60 50 g 1,0 50 6,0 50 8 0,50 5,4 40 8 40 40 0,0 7 4,8 7 -0,50 30 4,2 30 30 6 -1,0 3,6 6 -1,5 3,0 5 20 20 20 -2,0 5 2,4 4 -2,5 1,8 4 10 10 10 -3,0 1,2 3 -3,5 3 0,60 0 0 -4,0 2 0 0,0 0,2 0,3 0,4 0,0 0,1 0,0 0,1 0,4 0,5 0,2 0,3 b 0,4 0,5 0,0 0,1 0,2 0,3 b 0,6 b 10 10 5 9 9 4 3 8 8 2 7 7 1 6 6 E (MeV) E (MeV) E (MeV) 5 5 0 -1 4 4 -2 3 3 -3 2 2 -4 1 1 -5 0,0 0,1 0,2 0,3 b 0,4 0,5 0,6 0,0 0,1 0,2 0,3 b 0,4 0,5 0,6 0,0 0,1 0,2 0,3 b 0,4 0,5 0,6 Calculated potential surfaces for Zr isotopes and cuts at ? = 0. E. V. Mardyban, E. A. Kolganova, T. M. Shneidman, R. V. Jolos, and N. Pietralla. Phys. Rev. C 102, 034308 (2020) D.A. Sazonov, E.A. Kolganova, T.M. Shneidman, R.V. Jolos, N.Pietralla, and W. Witt, Phys.Rev. C 99, 031304(R) (2019).

  8. Results 140 7 7 B(2_1->0_1)exp B(4_1->2_1)exp B(2_1->0_1) B(4_1->2_1) E0_1exp E2_1exp E4_1exp E6_1exp E0_1 E2_1 E4_1 E6_1 E8_1 E0_2exp E2_2exp E4_2exp E6_2exp E0_2 E2_2 E4_2 E6_2 E8_2 120 6 6 100 5 5 BE2 (W.u.) E (MeV) E (MeV) 80 4 4 60 3 3 40 2 2 20 1 1 0 0 0 92 94 96 98 100 102 92 94 96 98 100 102 92 94 96 98 100 102 A A A Calculated (lines) and experimental (dots) energies of the first excited states with angular momentum 0, 2, 4, and 6 Calculated (lines) and experimental (dots) energies of the ground states with angular momentum 0, 2, 4 and 6 Calculated (lines) and experimental (dots) values of the probabilities of quadrupole transitions between the lowest states of the ground band Experimental data taken from https://www.nndc.bnl.gov/ensdf/

  9. Conclusion - The spectra of the lowest states of the chain of zirconium isotopes are described based on the geometric collective model. Good agreement with experimental data for excitation energies and E2 transition probabilities was obtained. - - It was shown that in the evolution of potential energy there is a phenomenon of shape coexistence. - There are some deviations for isotopes close to the spherical region due to the specifics of the used model. - The presented results are preliminary and will be further improved. Thank you for attention! The main results of previous works are included in E. V. Mardyban, E. A. Kolganova, T. M. Shneidman, R. V. Jolos, and N. Pietralla, Phys. Rev. C 102, 034308 (2020) D.A. Sazonov, E.A. Kolganova, T.M. Shneidman, R.V. Jolos, N.Pietralla, and W. Witt, Phys. Rev. C 99, 031304(R) (2019)

Related


More Related Content

giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#