Uncertainty sampling - PowerPoint PPT Presentation


Understanding Sampling Methods in Social Research

Sampling in social research involves selecting a subset of a population to make inferences about the whole. It helps in saving time and money, ensures accuracy in measurements, and allows estimation of population characteristics. The key principles of sampling include systematic selection, clear def

1 views • 19 slides


Understanding Sampling Methods in Statistical Analysis

Sampling is a crucial process in statistical analysis where observations are taken from a larger population. Different sampling techniques are used based on the analysis being performed. Sampling methods help in studying populations when studying the entire population is not feasible. There are two

0 views • 8 slides



Sampling Under the RRF - General Principles and Methods

Sampling under the RRF is essential for the Commission to ensure reasonable assurance of fulfillment of numerical milestones or targets. The approach involves statistical risk-based random sampling with specific thresholds and considerations for different types of milestones. Various statistical tab

0 views • 12 slides


Understanding Non-Probability Sampling Methods

Non-probability sampling methods involve selecting samples based on subjective judgment rather than random selection. Types include convenience sampling, quota sampling, judgmental (purposive) sampling, and snowball sampling. Convenience sampling picks easily available samples, quota sampling select

2 views • 7 slides


Understanding Active Learning in Machine Learning

Active Learning (AL) is a subset of machine learning where a learning algorithm interacts with a user to label data for desired outputs. It aims to minimize the labeling bottleneck by achieving high accuracy with minimal labeled instances, thus reducing the cost of obtaining labeled data. Techniques

0 views • 17 slides


Systematic Analysis of Real Samples in Analytical Chemistry

This analysis covers the systematic process involved in analyzing real samples, including sampling, sample preservation, and sample preparation. It discusses the importance of accurate sampling in obtaining information about various substances, such as solids, liquids, gases, and biological material

0 views • 54 slides


Understanding Sampling Plans in Statistical Analysis

Sampling is vital for statistical analysis, with sampling plans detailing objectives, target populations, operational procedures, and statistical tools. Different sampling methods like judgmental, convenience, and probabilistic sampling are used to select samples. Estimation involves assessing unkno

1 views • 36 slides


Introduction to Sampling in Statistics

Sampling in statistics involves selecting a subset of individuals from a population to gather information, as it is often impractical to study the entire population. This method helps in estimating population characteristics, although it comes with inherent sampling errors. Parameters represent popu

2 views • 24 slides


Understanding Sampling Methods and Errors in Research

Sampling is crucial in research to draw conclusions about a population. Various methods like simple random sampling, stratified sampling, and systematic sampling help in selecting representative samples. Sampling error arises due to differences between sample and population values, while bias leads

0 views • 12 slides


Understanding Measurement Uncertainty in Testing: Essentials and Guidelines

Measurement uncertainty in testing is a crucial aspect that characterizes the dispersion of values attributed to a measurand. This uncertainty plays a key role in reporting accurate test results, requiring careful evaluation of all significant contributions. The ISO/IEC Guide 98 GUM provides essenti

1 views • 18 slides


Fundamentals of Food Sampling and Analysis

Discover the key methods and procedures for sampling, transportation, and storage of environmental parameters, focusing on food sampling and analysis. Explore the importance of representative samples, quality analysis results, and risks associated with sampling. Learn about homogeneous vs. heterogen

5 views • 36 slides


Understanding Random Sampling and RAT-Stats in Statistical Analysis

Explore the concepts of random sampling, RAT-Stats, and their application in statistical analysis. Learn about sampling processes, common terms, precision points, and when to use these methods. Discover the steps involved in the sampling process and how it can be utilized in various audit and monito

2 views • 18 slides


Sampling Methods and Requirements for Water and Wastewater Analysis

The collection of water and wastewater samples is crucial for accurate analysis and monitoring. Understanding the reasons for sampling, different methods, and the importance of sample preparation is essential for obtaining reliable results. Planning sampling, meeting specific requirements, and selec

6 views • 22 slides


Managing Tension Between Creativity and Efficiency: A Framework for Uncertainty in Innovation

Explore the tension between creativity and efficiency in innovation through Pearsons' Uncertainty Map (1991), which categorizes uncertainty about ends and means. The map helps analyze uncertainty in various innovation processes, from exploratory research to improving existing products, offering insi

3 views • 42 slides


Understanding Analog Data and Digital Signal Transmission

This lecture delves into the concepts of analog data, digital signals, and the processes involved in data transmission and digital communication. It covers topics such as Pulse Amplitude Modulation (PAM), Analog-to-Digital Conversion, and Sampling. The conversion of analog signals to digital signals

0 views • 34 slides


Understanding Sampling and Signal Processing Fundamentals

Sampling plays a crucial role in converting continuous-time signals into discrete-time signals for processing. This lecture covers periodic sampling, ideal sampling, Fourier transforms, Nyquist-Shannon sampling, and the processing of band-limited signals. It delves into the relationship between peri

1 views • 60 slides


Understanding Sampling Frames in Statistical Business Registers

Sampling frames play a crucial role in surveys by providing a snapshot of statistical units needed for data collection. Key points include creating appropriate sampling frames, specifying target populations and variables of interest, and choosing the right statistical units based on the type of data

0 views • 20 slides


Understanding Biases in Sampling Methods

Statistical studies rely on samples to draw conclusions about populations, but the method of sampling can introduce biases. This text discusses convenience sampling, voluntary response sampling, random sampling, and the implications of biased sampling methods on study results. It highlights how bias

1 views • 12 slides


Insights into Recent Progress on Sampling Problems in Convex Optimization

Recent research highlights advancements in solving sampling problems in convex optimization, exemplified by works by Yin Tat Lee and Santosh Vempala. The complexity of convex problems, such as the Minimum Cost Flow Problem and Submodular Minimization, are being unraveled through innovative formulas

1 views • 47 slides


Guide to Environmental Surface Sampling Techniques

Understanding the importance of environmental surface sampling is crucial for ensuring hygiene and safety. This guide covers key aspects such as pre-sampling considerations, aseptic techniques, major sampling methods like RODAC plate, swab, and wipe methods, along with detailed procedures for each m

1 views • 16 slides


Lead Dust Wipe Sampling Techniques and Guidelines

This resource provides valuable information on lead dust wipe sampling techniques for Lead Dust Sampling Technicians. It covers the objectives, measuring lead dust, sampling strategy, sampling locations based on EPA RRP Rule, and HUD clearance regulations. Techniques for taking dust wipe samples, id

2 views • 41 slides


Comprehensive Guidelines for Meth Residue Sampling by Local Health Departments

This detailed guide outlines the procedures and protocols for meth residue sampling conducted by local health departments. It covers the reasons for sampling, the importance of qualified inspectors, testing methodologies, sampling kits assembly, and more. Key points include when and why sampling is

0 views • 19 slides


Understanding Sampling in Survey Research

This content covers essential concepts of survey research, statistics, and sampling methods. It delves into elements of the sampling problem, technical terms, and how to select a sample for surveys. The discussions revolve around population parameters, sampling procedures, and the control of informa

1 views • 39 slides


Understanding Sampling in Social Research Methods

Sampling in social research involves selecting a portion of a population to draw conclusions about the entire group. It helps save time, money, and allows for accurate measurements. The key principles of sampling include systematic selection, clear definition of sample units, independence of units,

0 views • 19 slides


Understanding Non-Probability Sampling Methods

Non-probability sampling involves selecting samples based on subjective judgment rather than random selection, leading to a lack of equal chances for all population members to participate. Various types include convenience sampling, quota sampling, judgmental sampling, and snowball sampling. Conveni

1 views • 7 slides


Understanding Sampling in Artificial Intelligence: An Overview

Exploring the concept of sampling in artificial intelligence, particularly in the context of Bayesian networks. Sampling involves obtaining samples from unknown distributions for various purposes like learning, inference, and prediction. Different sampling methods and their application in Bayesian n

1 views • 29 slides


Approximate Inference in Bayes Nets: Random vs. Rejection Sampling

Approximate inference methods in Bayes nets, such as random and rejection sampling, utilize Monte Carlo algorithms for stochastic sampling to estimate complex probabilities. Random sampling involves sampling in topological order, while rejection sampling generates samples from hard-to-sample distrib

0 views • 9 slides


Update on O2 CO2 Calibration Uncertainty Review

Reviewing the O2 CO2 calibration uncertainty, recent updates include identifying beam clipping on the reflection photodiode, switching to the transmitted photodiode, correcting time-dependent errors, and reducing overall uncertainty budget to primarily statistical uncertainty. Data and scripts used

0 views • 13 slides


State Crime Lab Drug Sampling Protocols

Using the State Crime Lab's drug sampling protocols for defense involves understanding three sampling methods: administrative sample selection, threshold sample selection, and hypergeometric sampling plan. The hypergeometric plan allows experts to make assumptions about the chemical composition of u

0 views • 30 slides


Transaction Cost Approach to Make-or-Buy Decisions

This study explores the influences of supplier market competition, volume uncertainty, technological uncertainty, and production costs on make-or-buy decisions. Transaction cost economics theory highlights the impact of uncertainty and asset specificity on such decisions, with a focus on buyer-suppl

0 views • 10 slides


Exploring Economic Uncertainty: A Global Perspective

Explore the sources of economic, social, and political uncertainty at regional and global levels. Discuss the rising tide of uncontrollable uncertainty and its implications for public policy and communities. Delve into economic globalization, social fragmentation, and the challenges posed by a world

0 views • 20 slides


Understanding Uncertainty with Estimation and Standard Error

Explore the concept of estimating with uncertainty, focusing on calculating a mean and using standard error to describe the uncertainty in that mean. Delve into human height, a variable described by a normal distribution, to understand how samples may deviate from the true mean. Discover sampling er

0 views • 13 slides


Understanding Sampling Variability in Statistical Analysis

Random sampling is crucial in statistical analysis to minimize sampling error. Sampling variability occurs due to chance when a random sample is surveyed instead of the entire population. Different units selected can lead to slightly varied estimates. It's important to understand and address samplin

1 views • 31 slides


Understanding Non-Probability Sampling Methods

Non-probability sampling involves selecting samples based on subjective judgement rather than random selection. This method may not give all population members an equal chance to participate. Types include convenience sampling, quota sampling, judgemental sampling, and snowball sampling.

0 views • 7 slides


Understanding Sampling Methods in Research

Explore key concepts in sampling such as probability and non-probability methods, sampling error, representativeness, and types of biases. Learn about the importance of sampling in research, theoretical variables, conceptualization, and operationalization. Evaluate different types of sampling proces

1 views • 20 slides


Understanding Non-Probability Sampling Techniques in Nursing Research

Non-probability sampling in nursing research involves selecting samples subjectively rather than randomly. This sampling method carries a higher risk of bias and limits statistical inference about the entire population. Five main types include convenience, purposive, quota, snowball, and voluntary r

0 views • 30 slides


Strategies Used by General Practitioners to Manage Uncertainty in Practice

General Practitioners (GPs) encounter uncertainty in their practice and utilize various strategies to address it. These strategies include safety netting, seeking advice from colleagues, sharing uncertainty with patients, review/follow-up processes, investigations, building rapport, and more. Collea

0 views • 35 slides


Understanding Sampling Uncertainty: A Comprehensive Overview

Sampling uncertainty arises due to variations in sample values, impacting statistical estimates. Larger samples reduce uncertainty, providing more precise estimates. Adequate sample sizes are crucial, especially for comparing different groups or magnitudes of effects. By quantifying uncertainty, res

0 views • 27 slides


Understanding Confidence, Uncertainty, Risk, and Decision-Making in Engineering Design

This presentation explores the intricate relationship between confidence, uncertainty, and risk in decision-making processes within engineering design studies. It highlights the importance of considering various perspectives and evaluating potential risks and benefits to make informed decisions. The

0 views • 21 slides


Understanding Sampling: Importance, Process, and Errors Explained

This content delves into the world of sampling, exploring why sampling is crucial, the sampling process involving defining populations and calculating sample sizes, and the distinction between non-sampling and sampling errors. It covers the significance of representative samples, common errors in sa

0 views • 15 slides