Spectra analysis - PowerPoint PPT Presentation


Algorithm Analysis

Algorithm analysis involves evaluating the efficiency of algorithms through measures such as time and memory complexity. This analysis helps in comparing different algorithms, understanding how time scales with input size, and predicting performance as input size approaches infinity. Scaling analysi

1 views • 30 slides


Market Analysis (Project Formulation)

This detailed guide covers essential aspects of market analysis and project formulation in entrepreneurship, including feasibility analysis, techno-economic analysis, market demand analysis, steps in market analysis, and factors to consider for market demand analysis. Explore how to assess market de

2 views • 30 slides



Spectra On-Prem Glacier Solutions Overview

Spectra Logic offers stability and consistency in data storage and management with a focus on innovation. Their solutions include front-end and back-end policy engines to efficiently archive data across different storage mediums like spinning disk, tape, and cloud. The Whiteboard Presentation Summar

0 views • 14 slides


Spectrophotometric Determination of Copper Sulfate Concentration

The experiment aims to determine the concentration of an unknown copper (II) sulfate solution by measuring light absorption at different wavelengths. Colored solutions absorb specific light wavelengths and appear colored to our eyes. By creating a calibration curve and following Beer's Law, the conc

3 views • 8 slides


Static Analysis Techniques Overview

Explore static analysis techniques such as syntactic analysis, dataflow analysis, and model checking. Understand the concept of basic blocks in static analysis and their boundaries. Dive into the opportunities provided by static analysis in summarizing program behavior without executing it.

9 views • 27 slides


Understanding Audio and 1D Signals in Machine Learning

Explore the world of audio and 1D signals in machine learning through topics such as representing sound with frequencies, deep networks for audio analysis, and the common use cases of 1D time series data. Learn about signal analysis, frequency spectra, and the contributions of Jean Baptiste Joseph F

6 views • 40 slides


Pascal's Rule in NMR Spectroscopy ( n+1 )

Pascal's Rule in NMR spectroscopy, also known as the (N+1) rule, is an empirical rule used to predict the multiplicity and splitting pattern of peaks in 1H and 13C NMR spectra. It states that if a nucleus is coupled to N number of equivalent nuclei, the multiplicity of the peak is N+1. The rule help

1 views • 30 slides


Slitless Stellar Spectroscopy with the SA100 Grating Procedures

Explore the world of slitless stellar spectroscopy with the SA100 grating as detailed by Anthony Harding in the ongoing creation of the Harding Spectra Library. Learn about the equipment used, the process of determining instrument response, capture procedures, and stacking techniques for obtaining s

0 views • 30 slides


Comprehensive Cost Management Training Objectives

This detailed training agenda outlines a comprehensive program focusing on cost management, including an overview of cost management importance, cost object definition, cost assignment, analysis, and reporting. It covers topics such as understanding cost models, cost allocations, various types of an

2 views • 41 slides


Understanding NMR Spectroscopy of Paramagnetic Molecules

NMR spectroscopy of paramagnetic molecules is influenced by the presence of unpaired electrons, leading to broadened spectra and complex coupling mechanisms. Quadrupolar nuclei, with spins greater than 1/2, play a significant role in the relaxation and splitting of NMR signals. The interaction betwe

0 views • 19 slides


Mass Spectrometry Analysis of Lipid Species

Detailed mass spectrometry data for various lipid species including APS(34:0), PI(O-36:1), C24(OH) Sulfatide, and PE(O-33:0) is provided in positive mode with corresponding adducts and neutral changes. The MS/MS spectra reveal fragment ions and structural information for each lipid species, aiding i

1 views • 4 slides


Understanding the Basics of 13C NMR Spectroscopy

Nuclear Magnetic Resonance (NMR) Spectroscopy is a powerful analytical tool used in chemistry to study the structure of molecules. This summary focuses on the application of 13C NMR spectroscopy, which provides valuable information about carbon atoms in a compound. The low natural abundance of carbo

0 views • 36 slides


Nanometrics RPM 2000 Photoluminescence Measurement Tool Guide

This guide provides step-by-step instructions for operating the Nanometrics RPM 2000 Photoluminescence measurement tool. It includes details on initializing the tool, setting up the laser, loading samples, collecting PL spectra, saving data, adjusting laser power, and shutting down the system. Follo

3 views • 12 slides


Understanding Quantum Mechanics in Atomic Structure

Exploring the connection between quantum mechanics and the fundamental elements of the periodic table, this material delves into the Schrödinger equation, quantization of angular momentum and electron spin, and the implications on atomic structure. The content covers writing the Schrödinger equati

1 views • 32 slides


Exploring the Vector Atom Model in Quantum Physics

Delve into the Vector Atom Model as presented by Dr. R. R. Mistry, discussing the quantum numbers, coupling, exclusion principles, and effects like Zeeman and Stark. Learn how this model explains complex atomic spectra and spatial quantization, offering a deeper understanding of atomic structures.

0 views • 11 slides


Structural Elucidation of Chemical Compounds Using Spectroscopy Techniques

This presentation discusses the various types of spectroscopy techniques such as UV-Visible, IR, Raman, NMR, and others used for elucidating the structure of chemical compounds. It covers the identification of molecule shapes like AB2, AB3, and AB4, with a focus on linear and non-linear structures.

0 views • 18 slides


Understanding Factors Affecting IR Bands in Sample Preparation

Learn about the importance of sample preparation in infrared spectroscopy, including techniques for solid sample preparation and the choice of solvents to obtain accurate IR spectra. Discover how factors like inductive and resonance effects influence IR frequencies in different functional groups.

0 views • 14 slides


Spectroscopy and Pattern Recognition in Pharmaceutical Analysis

Understanding spectroscopy and pattern recognition in pharmaceutical analysis is crucial for interpreting 1H NMR spectra. Specific splitting patterns indicate the presence of various functional groups like ethyl, isopropyl, and tert-butyl. Recognizing these patterns aids in identifying compounds eff

3 views • 51 slides


Understanding Mass Spectroscopy and Magnetic Sector Design in MS

Introduction to Mass Spectroscopy (MS), key physics effects, magnetic sector MS design considerations, measuring mass/charge ratio, and using derived principles to scan a magnetic sector MS. Learn about the historical development of magnetic sector mass spectrometers and the first recorded MS spectr

0 views • 14 slides


Production in Collisions at 8-16 TeV: Analysis Overview

Detailed analysis overview of the production in collisions at 8-16 TeV incorporating contributions from Pavel Larionov (ITSsa), Paula Matuoka (TPC), Silvia Pisano (TPC), and Marco Toppi (TOF). The analysis involves the comparison of spectra data to previous datasets, emphasizing the importance of un

0 views • 50 slides


Nuclear Data Recycling Using NuDat Programs

Explore the use of NuDat classes in plotting beta-minus decay half-lives, electron capture processes, reliable ECp values, and antineutrino spectra calculations. Delve into topics like cross-section spectra, thermal fission yields, and the decay of various nuclides. The research also discusses assum

0 views • 14 slides


NMR Spectroscopy Lecture Highlights and Questions

Explore the world of NMR spectroscopy through a lecture covering theory, instrumentation, and the effects of the environment on spectra. Delve into questions on magnetic field drift, spin states, sensitivity, peak width resolution, and more. Discover the intricate details of modern NMRs and the impa

1 views • 17 slides


Exploring the mhMSSM and SuSpect3 in Particle Physics

Explore the history and significance of the mhMSSM and SuSpect3 in particle physics, including the development of the MSSM, pMSSM, SuSpect calculator, and key discoveries like the R=+1 particle and relic density studies. Learn about supersymmetric particles, models like mSUGRA and NMSSM, and implica

0 views • 17 slides


Understanding Ultraluminous X-ray Sources (ULXs) Properties

Explore the timing and spectral properties of Ultraluminous X-ray Sources (ULXs) through research conducted by Middleton, Gladstone, Roberts, Done, Uttley, and others. Learn about the spectral shapes, spectral deconvolutions, variability in X-ray spectra, timing tools, classification into low and hi

0 views • 23 slides


Neutrino Interactions with Liquid Argon at DUNE Near Detector Complex

The Deep Underground Neutrino Experiment (DUNE) aims to study neutrino oscillations using high-precision measurements with detectors like the Near Detector complex located downstream of the neutrino beam. Components such as ND-LAr and SAND play crucial roles in scanning energy spectra. SAND, a perma

0 views • 16 slides


GOES-18 SEISS Solar Galactic Proton Sensor Product Validation Review

GOES-18 SEISS SGPS L1b product is undergoing provisional maturity testing by the GOES-R Calibration Working Group. The review includes evaluation of product quality, supporting instruments, health tests, and path to full validation. Users are responsible for inspecting and utilizing the preliminary

0 views • 39 slides


CAMSS Meteoroid Elemental Abundance Application and Modeling Development

Cameras for All-sky Meteor Surveillance Spectroscopy (CAMSS) aims to obtain meteoroid elemental abundances through relative ratios and absolute atom counts, sampling from comets and asteroids. The system uses grating cameras with high resolutions to automate spectral analysis processes. The CAMSS Co

0 views • 14 slides


Journey Through Science: Labs, Spectra, and Mentors

Explore a visual journey through various scientific labs, equipment, and notable personalities in the field of chemistry, including Giauque Low Temperature Lab at UC Berkeley, advanced measuring systems, and insights into the lives of renowned scientists like E. Bright Wilson and Doc Fong. Witness t

0 views • 13 slides


Characterizing the Atmospheres of Low Surface Gravity M-dwarfs

This study focuses on characterizing the atmospheres of low surface gravity M-dwarfs, which are promising hosts for exoplanets. The research delves into why low gravity M-dwarfs appear brighter in the infrared than typical M-dwarfs, presenting an improved base model with added opacities. The finding

0 views • 8 slides


Data Analysis and Passage Analysis Project Proposal

This project proposal by Anthony Yang focuses on developing a Java program for data analysis and passage analysis. The motivation behind the project is to gain more knowledge in computer science and statistics-related topics while utilizing technology to extract useful insights from data. The propos

0 views • 8 slides


Understanding Degenerate Perturbation Theory in Quantum Mechanics

Exploring time-independent perturbation theory, specifically focusing on non-degenerate and degenerate spectra. The lecture covers approximation schemes, treatment of multi-electron atom term values, and the effects of spin-orbit interaction. Concepts include evaluating expectation values, wavefunct

0 views • 13 slides


Task 4.3 Meeting Conclusions and Next Steps

The Task 4.3 meeting held on Dec 16-17, 2019, discussed key conclusions and outlined next steps for the ESCAPE project funded by the European Union. The meeting covered topics such as tech forums, hackathons, platform capabilities, imaging plans, progress reports, and future demos. Spectra analysis,

0 views • 4 slides


Understanding Active Galactic Nuclei and Black Hole Mass Measurements

Exploring active galactic nuclei (AGN) through reverberation mapping techniques to measure black hole masses, observing AGN schematics, ultraviolet-optical AGN spectra, and methods for measuring masses in space. Delve into the current understanding of AGN fields, the future prospects, and ongoing re

0 views • 30 slides


Insights into Infrared Spectroscopy of Planetary Molecules and Space Exploration

Infrared spectroscopy plays a crucial role in studying planetary molecules like NH3, PH3, and CH3CN, aiding in planetary observations and spacecraft missions. Ground-based observatories and spacecraft like GALILEO and Cassini/Huygens provide valuable data for analyzing planetary spectra and modeling

0 views • 13 slides


Grand Canonical Ensemble in Statistical Mechanics: Fermi-Dirac Distribution

Exploring the Fermi-Dirac distribution function and the Bose-Einstein distribution in the context of the grand canonical ensemble for non-interacting quantum particles. The lecture delves into the impact of particle spin on energy spectra, enumeration of possible states, self-consistent determinatio

0 views • 33 slides


Fourier Transform Infrared (FTIR) Spectroscopy Examples by Prof. Dr. Sulhattin YAŞAR

Fourier Transform Infrared (FTIR) spectroscopy is a technique used to obtain the absorption and emission spectra of solid, liquid, or gas substances. This content provides characteristic absorption peaks for various functional groups, such as alkane, alkyl, alkenyl, alkynyl, aromatic compounds, alco

0 views • 15 slides


Understanding Infrared Spectroscopy: An Overview of Vibration Energy and Spectral Regions

Infrared spectroscopy involves analyzing absorption spectra resulting from changes in vibration and rotation energy in molecules. The infrared region spans from 0.8 to 200 μm, with distinct zones categorized based on wavenumber and wavelength. Group frequencies and fingerprint regions offer detaile

0 views • 26 slides


Exploring Exoplanetary Atmospheres with IGRINS at Seoul National University

This study delves into the analysis of exoplanetary atmospheres using IGRINS at Seoul National University. Through detailed observations and analysis, the study aims to uncover new molecular features and properties of these atmospheres. Instruments from previous studies such as NICMOS, CRIRES, OSIRI

0 views • 16 slides


Exact Correlation Models in Biscalar Fishnet Theory

In the study of biscalar fishnet models, various operators and spectra were explored, leading to findings on exact correlation functions, strong coupling regimes, Regge limits, and more in arbitrary dimensions. The investigation delves into Lagrangian formulations, graph-building operators, conforma

0 views • 15 slides


Analysis of Superflare Isotopic Imprints in Lunar and Terrestrial Samples

Researchers investigate isotopic imprints in lunar and terrestrial samples to understand extreme solar events and their impact on atmospheric radiocarbon concentrations. Using 10Be and 36Cl data, they analyze the solar proton spectra and energy fluxes associated with these events, shedding light on

0 views • 13 slides