Schrodinger wave equation - PowerPoint PPT Presentation


Understanding Waves, Light, & Sound: Vocabulary and Concepts

This chapter covers essential vocabulary and concepts related to waves, light, and sound, including amplitude, crest, diffraction, Doppler effect, electromagnetic wave, frequency, interference, longitudinal wave, mechanical wave, medium, photon, pitch, reflection, refraction, sound wave, standing wa

8 views • 21 slides


Understanding Cylindrical Wave Functions and Bessel Equations in Electromagnetics

Exploring cylindrical wave functions and Bessel equations, derived from the Helmholz equation, for understanding wave propagation dynamics in electromagnetics. The notes cover separation of variables, solutions for R and Z, Bessel functions, and more.

3 views • 50 slides



Hydrologic Modeling Methods in HEC-HMS: A Comprehensive Overview

Explore the transformative methods within HEC-HMS hydrologic modeling, including unit hydrograph derivation, excess precipitation transformation, hydrograph illustration, surface transform methods, and concepts like the kinematic wave and 2D diffusion wave. Learn about the unit hydrograph, kinematic

0 views • 41 slides


Understanding Bernoulli's Equation in Fluid Mechanics

Bernoulli's equation, a fundamental principle in fluid dynamics, relates pressure, kinetic energy, and potential energy of a fluid flowing in a pipe. Through examples and explanations, explore how this equation can be used to calculate velocity, pressure differences, and forces in various scenarios

1 views • 12 slides


Understanding Radio Wave Propagation and Solar Activity Effects

Explore how radio waves travel and are influenced by solar activity. Learn about HF radio wave propagation, critical layers, day-night cycle effects, sunspots, coronal mass ejections, solar wind, auroras, and more. Discover the impacts of solar flux, sunspot numbers, and solar flares on radio wave c

7 views • 45 slides


Understanding Wave Motion: Longitudinal and Transverse Waves

Explore the fundamentals of wave motion including longitudinal and transverse waves, wave length, frequency, speed, and the Doppler effect. Learn about different types of waves, their characteristics, and the distinction between wave speed and the speed of a particle. Discover the properties of wave

1 views • 18 slides


Understanding Waveguiding Systems and Helmholtz Equation in Microwave Engineering

Waveguiding systems are essential in confining and channeling electromagnetic energy, with examples including rectangular and circular waveguides. The general notation for waveguiding systems involves wave propagation and transverse components. The Helmholtz Equation is a key concept in analyzing el

0 views • 50 slides


Understanding Operator Formalism in Quantum Mechanics

Dive into the world of quantum mechanics with Dr. N. Shanmugam as he explains the role of operators, their significance in quantum mechanics, and how they are used to determine physical quantities through expectation values. Explore concepts such as the Hamiltonian operator, time-independent Schrodi

1 views • 49 slides


Understanding Thermodynamics and Fluid Mechanics Fundamentals for Efficiency

Explore key concepts in thermodynamics and fluid mechanics such as the equation of continuity, the first law of thermodynamics, the momentum equation, Euler's equation, and more. Learn about efficiency, internal energy, and the laws governing energy transfer in various systems. Delve into topics lik

2 views • 12 slides


Understanding Particle-on-a-Ring Approximation in Chemistry

Delve into the fascinating world of the particle-on-a-ring approximation in chemistry, exploring concepts like quantum quantization of energy levels, De Broglie approach, Schrödinger equation, and its relevance to the electronic structure of molecules. Discover how confining particles to a ring lea

0 views • 23 slides


Theoretical Derivation and Application of Nuclear Shell Model in Quantum Physics

The nuclear shell model, a fundamental concept in quantum physics, is explained in detail using Schrodinger wave equations and spherical coordinates. The model describes the behavior of nucleons in atomic nuclei based on energy values, quantum numbers, and shell closure principles. Spin-orbit intera

0 views • 14 slides


Theoretical Derivation and Application of Nuclear Shell Model in Quantum Physics

Brought to you by Dr. Md. Rabiul Islam, Associate Professor at RGU, this presentation delves into the theoretical derivation of the shell model using Schrodinger wave equations in the presence of specific potentials. Exploring the solutions for the wave equation and explaining the role of quantum nu

1 views • 14 slides


Designing Low-Pass Filter for Square Wave Harmonic Suppression

This tutorial discusses the design of a low-pass filter to suppress harmonics in the output of a square wave signal. The goal is to achieve at least 32 dB attenuation of any harmonics relative to the fundamental sinusoid at 5 kHz. The solution involves analyzing the square wave, determining the nece

0 views • 18 slides


DC Machine Armature Windings Overview

Learn about the construction and types of armature windings in DC machines, including lap wound and wave wound armatures. Discover how lap wound armatures are suitable for low voltage, high current applications, while wave wound armatures are used in high voltage, low current scenarios. Understand t

0 views • 18 slides


Understanding Rectifiers: Types and Working Principles

A rectifier is a crucial electrical device that converts AC to DC, allowing current to flow in only one direction. Explore the different types of rectifiers like half-wave and full-wave, along with their working principles and efficiency considerations. Dive into the explanation of rectification pro

0 views • 15 slides


G.P. Thomson's Experiment: Confirmation of Matter Wave Nature of Electrons

The experiment conducted by G.P. Thomson in 1928 confirmed the matter wave nature of electrons through diffraction patterns obtained when high-speed electrons were diffracted from a thin metallic film. The setup involved accelerating electrons through a high potential, incident on a gold foil, and t

0 views • 6 slides


Understanding the Hammett Equation in Chemical Reactions

The Hammett equation explores how substituents influence the dissociation of benzoic acid, affecting its acidity. By quantifying this influence through a linear free energy relationship, the equation helps predict the impact of substituents on different processes. Through parameter definitions and m

0 views • 9 slides


Understanding Waveform Generators in Electronic Circuits

Waveform generators, such as square wave oscillators and triangular wave generators, play crucial roles in electronic circuits. Square wave oscillators use capacitors and op-amps to create square wave outputs through charging and discharging processes. On the other hand, triangular wave generators u

0 views • 11 slides


Understanding Radio Wave Propagation in the Ionosphere

Radio wave propagation in the ionosphere is influenced by factors such as the radio refractive index and absorption of radio wave energy. This chapter delves into the interaction of radio waves with the ionosphere, discussing concepts like the electromagnetic spectrum nomenclature and the frequency

0 views • 15 slides


Harnessing Wave Energy: A Renewable Resource for Sustainable Power Generation

Utilizing the kinetic energy of ocean waves through transverse and longitudinal wave interactions, wave energy presents a promising renewable resource for electricity generation. This form of renewable energy, akin to wind power, involves converting the motion of waves into electrical power by deplo

0 views • 16 slides


Understanding Quantum Mechanics in Atomic Structure

Exploring the connection between quantum mechanics and the fundamental elements of the periodic table, this material delves into the Schrödinger equation, quantization of angular momentum and electron spin, and the implications on atomic structure. The content covers writing the Schrödinger equati

1 views • 32 slides


Introduction to Dynamic Structural Equation Modeling for Intensive Longitudinal Data

Dynamic Structural Equation Modeling (DSEM) is a powerful analytical tool used to analyze intensive longitudinal data, combining multilevel modeling, time series modeling, structural equation modeling, and time-varying effects modeling. By modeling correlations and changes over time at both individu

0 views • 22 slides


Understanding Quantum Chemistry and Electron Orbitals

Quantum chemistry plays a key role in determining chemical bonds, phase stabilities, and mineral physics through the study of electron orbitals, quantum numbers, and energy levels. This involves concepts such as the Schrödinger equation, quantum quantities, and the uncertainty principle. The arrang

0 views • 31 slides


Unraveling the Enigmatic World of Quantum Mechanics

Delve into the perplexing realm of modern quantum mechanics, exploring concepts such as Born's probability interpretation, the indeterminacy principle, the Schrödinger equation, and the fascinating duality of particle-wave behavior. Gain insights into the transformative impact of quantum theory on

0 views • 16 slides


Fundamental Physics Principles Explored by Schrodinger and De Broglie

Shashi Kant Kumar dives into the groundwork laid by notable physicists such as Schrodinger and De Broglie, highlighting the fundamental principles of quantum mechanics. The evolution of Schrodinger's equation, the Nobel Prize-winning collaborations, and the application of wave mechanics to atomic st

0 views • 13 slides


Understanding Separation Columns in Chemical Engineering

Explore the world of separation columns including distillation, absorption, and extraction, along with empirical correlations, minimum number of stages, Fenske equation, Underwood equation, Kirkbride equation, examples, and solutions presented by Dr. Kh. Nasrifar from the Department of Chemical and

2 views • 15 slides


Evolution of Light Theory: From Wave Theory to Quantum Theory

At the turn of the century, the discovery of the photoelectric effect challenged the wave theory of light, leading to the development of the quantum theory by Max Planck and Albert Einstein. This new theory introduced the concept of discrete energy units known as quanta, bridging the gap between wav

1 views • 62 slides


Comprehensive Overview of Freezing Time Methods in Dairy Engineering

Neumann, Tao, and Non-Dimensional methods are key approaches for determining freezing times in unsteady state heat transfer processes in dairy engineering. The Neumann Problem, Tao Solutions, and Cleland and Earle Non-Dimensional Equation offer distinct equations and models to calculate freezing tim

1 views • 8 slides


Understanding Diode Circuits: Half-Wave Rectifiers and Full-Wave Rectifiers

Diode circuits play a crucial role in converting AC signals to DC signals. This article covers the basics of diodes, half-wave rectifiers, and full-wave rectifiers. It explains the functioning of unfiltered and filtered rectifier circuits, highlighting the differences in ripple effects and voltage r

4 views • 18 slides


Understanding Complex Wavevectors in Homogeneous Media

Exploring the concept of complex wavevectors in a homogeneous medium, this content delves into monochromatic waves, Maxwell equations, wave propagation, and the relationship between material properties and wave behavior. It discusses how the complex nature of wavevectors impacts fields, damping, and

0 views • 17 slides


Understanding General Plane Waves in Electromagnetic Theory

This study focuses on the analysis of general plane waves in electromagnetic theory, covering topics such as the general form of plane waves, Helmholtz equation, separation equation, wavenumber vector, Maxwell's equations for plane waves, and the symbolic representation of plane waves. The content d

0 views • 41 slides


Understanding Elastic Wave Equations in Seismology

Explore the fundamentals of elastic wave equations for seismology, including topics such as plane wave propagation, reflection coefficients, and wavefield simplifications using curl and div operators. Learn about P-waves, shear waves, and elastodynamic potentials in the context of infinite homogeneo

0 views • 31 slides


Understanding Young's Double-Slit Experiment and Interference Patterns

Thomas Young's double-slit experiment in the late 1700s provided evidence of light behaving as a wave, showcasing interference patterns. This experiment challenged the particle theory of light and supported the wave theory. The interference patterns observed helped scientists grasp the wave nature o

0 views • 27 slides


Introduction to Quantum Mechanics: Energy Levels and Schrödinger Equation

Quantum mechanics reveals that all systems possess discrete energy levels, determined by solving the Schrödinger equation where the Hamiltonian operator represents total energy. In a particle-in-a-box scenario, potential energy is infinite outside the box. The Schrödinger equation simplifies to a

0 views • 12 slides


Understanding Sound Waves: Exploring Wave Phenomena in Physics

Delve into the intricacies of sound waves in Physics with a focus on standing waves, boundary conditions, amplitude variations, and wave interactions. Explore concepts like harmonic wave addition, pulse encounters, and outcomes at fixed and free ends of a string. Discover how different scenarios aff

0 views • 22 slides


Journey Through Science: Labs, Spectra, and Mentors

Explore a visual journey through various scientific labs, equipment, and notable personalities in the field of chemistry, including Giauque Low Temperature Lab at UC Berkeley, advanced measuring systems, and insights into the lives of renowned scientists like E. Bright Wilson and Doc Fong. Witness t

0 views • 13 slides


Fundamental Comparison: Wheeler-DeWitt vs. Schrödinger Equation

The debate on whether the Wheeler-DeWitt equation is more fundamental than the Schrödinger equation in quantum gravity remains inconclusive. While the Wheeler-DeWitt equation presents an elegant formulation, the Schrödinger equation is essential in specific cases. The issue of time and coordinate

0 views • 6 slides


Understanding Time-Independent Perturbation Theory in Quantum Mechanics

Perturbation theory is a powerful tool in solving complex physical and mathematical problems approximately by adjusting solutions from a related problem with known solutions. This theory allows for more accurate approximate solutions by treating the difference as a small perturbation. An example inv

0 views • 19 slides


Understanding Open Channel Flow and Mannings Equation

This review covers hydraulic devices such as orifices, weirs, sluice gates, siphons, and outlets for detention structures. It focuses on open channel flow, including uniform flow and varied flow, and explains how to use Mannings equation for calculations related to water depth, flow area, and veloci

0 views • 43 slides


Exploring Membrane Potential Densities and the Fokker-Planck Equation in Neural Networks

Delve into the concepts of membrane potential densities and the Fokker-Planck Equation in neural networks, covering topics such as integrate-and-fire with stochastic spike arrival, continuity equation for membrane potential density, jump and drift flux, and the intriguing Fokker-Planck Equation.

0 views • 29 slides