Non hierarchical models - PowerPoint PPT Presentation


Prioritizing Clinically Important Outcomes Using Hierarchical Win Ratio

Clinical trials often use composite outcomes, but conventional analysis methods have limitations in accurately reflecting clinical reality. Hierarchical outcomes offer flexibility by defining a hierarchy of events based on importance. Analyzing trials using hierarchical outcomes involves comparing p

7 views • 20 slides


Global Climate Models

Scientists simulate the climate system and project future scenarios by observing, measuring, and applying knowledge to computer models. These models represent Earth's surface and atmosphere using mathematical equations, which are converted to computer code. Supercomputers solve these equations to pr

3 views • 15 slides



System Models in Software Engineering: A Comprehensive Overview

System models play a crucial role in software engineering, aiding in understanding system functionality and communicating with customers. They include context models, behavioural models, data models, object models, and more, each offering unique perspectives on the system. Different types of system

2 views • 33 slides


Understanding Input-Output Models in Economics

Input-Output models, pioneered by Wassily Leontief, depict inter-industry relationships within an economy. These models analyze the dependencies between different sectors and have been utilized for studying agricultural production distribution, economic development planning, and impact analysis of i

8 views • 7 slides


Understanding Clustering Algorithms: K-means and Hierarchical Clustering

Explore the concepts of clustering and retrieval in machine learning, focusing on K-means and Hierarchical Clustering algorithms. Learn how clustering assigns labels to data points based on similarities, facilitates data organization without labels, and enables trend discovery and predictions throug

1 views • 48 slides


Understanding Models of Teaching in Education

Exploring different models of teaching, such as Carroll's model, Proctor's model, and others, that guide educational activities and environments. These models specify learning outcomes, environmental conditions, performance criteria, and more to shape effective teaching practices. Functions of teach

2 views • 20 slides


Understanding Models of Teaching for Effective Learning

Models of teaching serve as instructional designs to facilitate students in acquiring knowledge, skills, and values by creating specific learning environments. Bruce Joyce and Marsha Weil classified teaching models into four families: Information Processing Models, Personal Models, Social Interactio

1 views • 28 slides


Significance of Models in Agricultural Geography

Models play a crucial role in various disciplines, including agricultural geography, by offering a simplified and hypothetical representation of complex phenomena. When used correctly, models help in understanding reality and empirical investigations, but misuse can lead to dangerous outcomes. Longm

0 views • 8 slides


Understanding CGE and DSGE Models: A Comparative Analysis

Explore the similarities between Computable General Equilibrium (CGE) models and Dynamic Stochastic General Equilibrium (DSGE) models, their equilibrium concepts, and the use of descriptive equilibria in empirical modeling. Learn how CGE and DSGE models simulate the operation of commodity and factor

4 views • 15 slides


Enhancing Information Retrieval with Augmented Generation Models

Augmented generation models, such as REALM and RAG, integrate retrieval and generation tasks to improve information retrieval processes. These models leverage background knowledge and language models to enhance recall and candidate generation. REALM focuses on concatenation and retrieval operations,

1 views • 9 slides


Understanding Item Response Theory in Measurement Models

Item Response Theory (IRT) is a statistical measurement model used to describe the relationship between responses on a given item and the underlying trait being measured. It allows for indirectly measuring unobservable variables using indicators and provides advantages such as independent ability es

2 views • 32 slides


Understanding Discrete Optimization in Mathematical Modeling

Discrete Optimization is a field of applied mathematics that uses techniques from combinatorics, graph theory, linear programming, and algorithms to solve optimization problems over discrete structures. This involves creating mathematical models, defining objective functions, decision variables, and

0 views • 12 slides


Observational Constraints on Viable f(R) Gravity Models Analysis

Investigating f(R) gravity models by extending the Einstein-Hilbert action with an arbitrary function f(R). Conditions for viable models include positive gravitational constants, stable cosmological perturbations, asymptotic behavior towards the ΛCDM model, stability of late-time de Sitter point, a

1 views • 12 slides


Understanding Wireless Propagation Models: Challenges and Applications

Wireless propagation models play a crucial role in characterizing the wireless channel and understanding how signals are affected by environmental conditions. This article explores the different propagation mechanisms like reflection, diffraction, and scattering, along with the challenges and applic

1 views • 14 slides


Models for On-line Control of Polymerization Processes: A Thesis Presentation

This presentation delves into developing models for on-line control of polymerization processes, focusing on reactors for similar systems. The work aims to extend existing knowledge on semi-batch emulsion copolymerization models, with a goal of formulating models for tubular reactors. Strategies, ba

0 views • 16 slides


Design and Evaluation of Hierarchical Rings with Deflection Routing

This research explores the implementation of Hierarchical Rings with Deflection (HiRD) routing as a solution to the performance and energy inefficiencies found in traditional hierarchical ring designs. HiRD guarantees livelock freedom and efficient delivery while simplifying the network structure by

0 views • 52 slides


Understanding N-Gram Models in Language Modelling

N-gram models play a crucial role in language modelling by predicting the next word in a sequence based on the probability of previous words. This technology is used in various applications such as word prediction, speech recognition, and spelling correction. By analyzing history and probabilities,

0 views • 101 slides


Fatigue Analysis of Non-Proportionally Loaded Shaft with a Fillet

This analysis focuses on high-cycle fatigue in a non-proportionally loaded structure, using stress-based models Findley, Matake, and Dang Van. Non-proportional loading, where loads affect the structure out of phase, is discussed along with the selection of fatigue models based on load type, expected

0 views • 5 slides


Understanding Information Retrieval Models and Processes

Delve into the world of information retrieval models with a focus on traditional approaches, main processes like indexing and retrieval, cases of one-term and multi-term queries, and the evolution of IR models from boolean to probabilistic and vector space models. Explore the concept of IR models, r

0 views • 65 slides


Understanding Multiclass Logistic Regression in Data Science

Multiclass logistic regression extends standard logistic regression to predict outcomes with more than two categories. It includes ordinal logistic regression for hierarchical categories and multinomial logistic regression for non-ordered categories. By fitting separate models for each category, suc

0 views • 23 slides


Exploring the Organization of Concepts in Categorization Models

Understanding the functions and structures of categorization models in cognitive processes. From hierarchical structures to preferred levels of conceptualization, learn about the basic level, superordinate level, and subordinate level of categorization. Discover the significance of the basic level i

0 views • 33 slides


Creating Second Hierarchical Data Table in Windchill PDMLink

Learn how to set up a second hierarchical data table in Windchill PDMLink by selecting rows from the first table to view and interact with related objects in a structured manner. The process involves customization and user actions within the tables to manage parts and documents efficiently.

0 views • 8 slides


Understanding Cross-Classified Models in Multilevel Modelling

Cross-classified models in multilevel modelling involve non-hierarchical data structures where entities are classified within multiple categories. These models extend traditional nested multilevel models by accounting for complex relationships among data levels. Professor William Browne from the Uni

0 views • 13 slides


Hierarchical Attention Transfer Network for Cross-domain Sentiment Classification

A study conducted by Zheng Li, Ying Wei, Yu Zhang, and Qiang Yang from the Hong Kong University of Science and Technology on utilizing a Hierarchical Attention Transfer Network for Cross-domain Sentiment Classification. The research focuses on sentiment classification testing data of books, training

0 views • 28 slides


Understanding the Influence of Words on Sound Recognition in Interactive and Non-interactive Models

Influence of words on sound recognition differs in interactive and non-interactive models. In interactive models, sounds activate words in the mind in a feedback loop, while in non-interactive models, two routes exist to recognize a sound, one through words and the other directly through sounds. Thi

0 views • 6 slides


Data Summarization with Hierarchical Taxonomy: Motivations and Examples

The research discusses the use of Hierarchical DAGs in summarizing data with a focus on disease ontology and animal diseases. It explores how general concepts can summarize specific items and their relationships. The study also presents motivated examples of popular papers summarization in SIGMOD, s

0 views • 27 slides


Classifying Entities into an Incomplete Ontology: Exploratory EM Approach

The research discusses methods for hierarchical classification of entities into incomplete ontologies. It explores the challenges of evolving web-scale datasets and the need for classifying entities in an incomplete ontology structure. The Hierarchical Exploratory EM model is detailed, providing ins

0 views • 27 slides


Denoising-Oriented Deep Hierarchical Reinforcement Learning for Next-basket Recommendation

This research paper presents a novel approach, HRL4Ba, for Next-basket Recommendation (NBR) by addressing the challenge of guiding recommendations based on historical baskets that may contain noise products. The proposed Hierarchical Reinforcement Learning framework incorporates dynamic context mode

0 views • 16 slides


Hierarchical Semi-Supervised Classification with Incomplete Class Hierarchies

This research explores the challenges and solutions in semi-supervised entity classification within incomplete class hierarchies. It addresses issues related to food, animals, vegetables, mammals, reptiles, and fruits, presenting an optimized divide-and-conquer strategy. The goal is to achieve semi-

0 views • 18 slides


Understanding Composite Models in Building Complex Systems

Composite models are essential in representing complex entities by combining different types of models, such as resource allocation, transport, and assembly models. Gluing these models together allows for a comprehensive representation of systems like the milk industry, where raw materials are trans

0 views • 27 slides


Enhanced Energy Storage Model Proposal for Li-ion and Flow Batteries

Exploring similarities and differences between Li-ion and Flow Batteries, the workgroup aims to structure models that build on commonalities without restricting a specific technology. Participants express interest in expanding the models to deeper hierarchical levels. The proposed models cover diffe

0 views • 9 slides


Building Hierarchical Ratings Model without Alternatives Listed

Learn to build a hierarchical ratings model with 4 criteria, including subcriteria for Comfort, using a step-by-step approach. Explore how to select covering criteria, create performance scales, add and rate alternatives, and prioritize rating intensities for effective evaluation. Streamline your ra

0 views • 12 slides


Efficient and Effective Duplicate Detection in Hierarchical Data

This study explores the efficient and effective detection of duplicates in hierarchical data, focusing on fuzzy duplicates and hierarchical relationships in XML. It discusses the current and proposed systems, including the use of Bayesian networks for similarity computations. The methods involve vec

0 views • 25 slides


Graph Summarization on Hierarchical DAGs

Explore top-k graph summarization techniques on Hierarchical Directed Acyclic Graphs (DAGs) like Disease Ontology, ImageNet, and Wikipedia Categories. Understand motivations for summarization, related works, and the kDAG-Problem. Discover algorithms, experiments, and conclusions for efficient graph

0 views • 38 slides


ADMADE Project: Dynamic Models for Energy Sector Optimization

The ADMADE project, led by Prof. Erik Dahlquist at Malardalen University, focuses on developing adaptive dynamic models for maintenance-on-demand and process optimization of combined heat and power plants. The project aims to create mathematical tools for the future energy sector, emphasizing renewa

0 views • 4 slides


Evolution of Database Management Systems

The evolution of Database Management Systems (DBMS) began with file systems and punched cards in the 1950s, followed by hierarchical and network models in the 1960s and 1970s. The 1980s introduced relational databases like Ingres, Oracle, DB2, and Sybase. The 1990s saw the rise of object-oriented an

0 views • 31 slides


Understanding Hierarchical vs. Non-Hierarchical Models in Computer Graphics

Dive into the concepts of hierarchical and non-hierarchical modeling in computer graphics. Explore how hierarchical models represent complex objects with explicit sub-part dependencies, while non-hierarchical models treat objects independently. Understand the benefits and challenges of each approach

0 views • 30 slides


Utilizing Bayesian Hierarchical Model for Clinical Trial Quality Design

Explore how a Bayesian Hierarchical Model can be leveraged to design quality into clinical trials and ensure compliance with ICH E6 R2 Quality Tolerance Limits. Learn about the Risk-Based approach, Quality Tolerance Limits methodology, and the application of Bayesian modeling for early phase studies

0 views • 14 slides


Hierarchical Body Modeling in OpenGL Homework 3

Explore the concepts of hierarchical body modeling in OpenGL Homework 3 by creating body part hierarchies, recording transformation matrices, and understanding the hierarchy structures. The homework focuses on building hierarchies for body parts like thighs and shanks, applying transformations, and

0 views • 23 slides


Machine Learning Approach for Hierarchical Classification of Transposable Elements

This study presents a machine learning approach for the hierarchical classification of transposable elements (TEs) based on pre-annotated DNA sequences. The research includes data collection, feature extraction using k-mers, and classification approaches. Proper categorization of TEs is crucial for

0 views • 18 slides