Navier stokes equation - PowerPoint PPT Presentation


Understanding Bernoulli's Equation in Fluid Mechanics

Bernoulli's equation, a fundamental principle in fluid dynamics, relates pressure, kinetic energy, and potential energy of a fluid flowing in a pipe. Through examples and explanations, explore how this equation can be used to calculate velocity, pressure differences, and forces in various scenarios

1 views • 12 slides


Thermodynamics of Solar Plasma: SAHA-S Equation of State and Recent Results

SAHA-S equation of state (EOS) presents the current state and recent results in thermodynamics of solar plasma. Key authors V.K. Gryaznov, A.N. Starostin, and others have contributed to this field over 20 years. The equilibrium composition between 145 species, including elements and all ions, is exp

1 views • 23 slides



If you are looking for Gasfitting in Hutt Central

If you are looking for Gasfitting in Hutt Central, Welcome to Sinclair Plumbing in Stokes Valley. We fix leaking hot water cylinders, dripping taps, or burst pipes. Call us today. We provide plumbing maintenance and repair services to the residents of Hutt Valley\/Wellington regions. We offer a wide

0 views • 6 slides


Overview of Fluid Mechanics: Branches, Flow Types, and Equations

Fluid mechanics is subdivided into three branches: Fluid Static, Kinematics, and Hydrodynamics. The study of fluid flow includes different types such as uniform, non-uniform, steady, and unsteady flow. The motion of fluid particles obeys Newton's laws, and the conservation of mass and energy plays a

1 views • 4 slides


Understanding the Quantity Theory of Money: Fisher vs. Cambridge Perspectives

The Quantity Theory of Money explains the relationship between money supply and the general price level in an economy. Fisher's Equation of Exchange and the Cambridge Equation offer different perspectives on this theory, focusing on money supply vs. demand for money, different definitions of money,

0 views • 7 slides


Understanding Structural Equation Modeling (SEM) and Quality of Life Analysis

Structural Equation Modeling (SEM) is a statistical technique used to analyze relationships between variables, including quality of life factors such as physical health and mental well-being. Quality of life is a multidimensional concept encompassing various aspects like social relationships, living

0 views • 21 slides


Understanding Freezing Time and Freezers for Food Products

Importance of freezing time in the design of freezers is crucial for maintaining food quality during storage. Plank's equation is used to calculate freezing time based on various parameters. Limitations and assumptions of the equation need to be considered for accurate results.

0 views • 15 slides


Understanding Waveguiding Systems and Helmholtz Equation in Microwave Engineering

Waveguiding systems are essential in confining and channeling electromagnetic energy, with examples including rectangular and circular waveguides. The general notation for waveguiding systems involves wave propagation and transverse components. The Helmholtz Equation is a key concept in analyzing el

1 views • 50 slides


Understanding Thermodynamics and Fluid Mechanics Fundamentals for Efficiency

Explore key concepts in thermodynamics and fluid mechanics such as the equation of continuity, the first law of thermodynamics, the momentum equation, Euler's equation, and more. Learn about efficiency, internal energy, and the laws governing energy transfer in various systems. Delve into topics lik

2 views • 12 slides


Rearranging Work Equation and Examples

Learn how to mathematically rearrange the work equation and calculate work using the formula W = F x d. Understand the relationship between force, distance, and work through detailed examples and step-by-step solutions.

0 views • 10 slides


Understanding Economic Forecasting with Simulation Models

Explore the concept of economic forecasting using multi-equation simulation models, focusing on producing data that follows estimated equations rather than estimating model parameters. Learn about endogenous and exogenous variables, the importance of assumptions in forecasting, and the use of simula

0 views • 38 slides


Understanding Fluorescence Microscopy: Principles and Applications

Fluorescence microscopy, pioneered by British scientist Sir George G. Stokes, reveals hidden details in specimens using fluorescent dyes that emit light of longer wavelengths. This innovative technique allows for visualization of cellular components that are otherwise colorless under conventional mi

0 views • 19 slides


Understanding the Derivation of the Nernst Equation and Its Implications

The Nernst Equation is derived to provide insight into membrane potential and its role in various health conditions like cystic fibrosis and epilepsy. This derivation involves combining diffusive flux, electric drift, and mobility terms, leading to a deeper understanding of membrane behavior. The Bo

1 views • 26 slides


Understanding the Hammett Equation in Chemical Reactions

The Hammett equation explores how substituents influence the dissociation of benzoic acid, affecting its acidity. By quantifying this influence through a linear free energy relationship, the equation helps predict the impact of substituents on different processes. Through parameter definitions and m

0 views • 9 slides


Understanding Differential Equations in Economics Honours

Differential equations, introduced by Newton and Leibniz in the 17th century, play a key role in economics. These equations involve derivatives and represent implicit functional relationships between variables and their differentials, often related to time functions. The order and degree of a differ

1 views • 16 slides


Application of the Momentum Equation in Fluid Mechanics

Explore examples of applying the momentum equation in fluid mechanics, including calculating forces in pipe bends, nozzles, impacts on surfaces, and around vanes. The analysis involves determining total force, pressure force, and resultant force through control volume diagrams and coordinate axis sy

0 views • 14 slides


Introduction to Dynamic Structural Equation Modeling for Intensive Longitudinal Data

Dynamic Structural Equation Modeling (DSEM) is a powerful analytical tool used to analyze intensive longitudinal data, combining multilevel modeling, time series modeling, structural equation modeling, and time-varying effects modeling. By modeling correlations and changes over time at both individu

0 views • 22 slides


Understanding Particle Motion in Fluids: Dynamics and Phenomena

Exploring the intricate dynamics of particle motion within fluids, this content delves into mechanical micro-processes, particle velocity, terminal velocity, flow regimes, and the calculation of drag coefficients. It covers the Stokes region, laminar flow conditions, and considerations for transient

0 views • 28 slides


Understanding Separation Columns in Chemical Engineering

Explore the world of separation columns including distillation, absorption, and extraction, along with empirical correlations, minimum number of stages, Fenske equation, Underwood equation, Kirkbride equation, examples, and solutions presented by Dr. Kh. Nasrifar from the Department of Chemical and

5 views • 15 slides


Comprehensive Overview of Freezing Time Methods in Dairy Engineering

Neumann, Tao, and Non-Dimensional methods are key approaches for determining freezing times in unsteady state heat transfer processes in dairy engineering. The Neumann Problem, Tao Solutions, and Cleland and Earle Non-Dimensional Equation offer distinct equations and models to calculate freezing tim

1 views • 8 slides


Introduction to Quantum Mechanics: Energy Levels and Schrödinger Equation

Quantum mechanics reveals that all systems possess discrete energy levels, determined by solving the Schrödinger equation where the Hamiltonian operator represents total energy. In a particle-in-a-box scenario, potential energy is infinite outside the box. The Schrödinger equation simplifies to a

0 views • 12 slides


Fundamental Comparison: Wheeler-DeWitt vs. Schrödinger Equation

The debate on whether the Wheeler-DeWitt equation is more fundamental than the Schrödinger equation in quantum gravity remains inconclusive. While the Wheeler-DeWitt equation presents an elegant formulation, the Schrödinger equation is essential in specific cases. The issue of time and coordinate

0 views • 6 slides


Cash Flow Planning in Bellevue | Contact Now for Advice | Avier Wealth Advisors

\nAvier Wealth Advisors provides expert cash flow planning in Bellevue, helping you manage income, expenses, and savings to achieve financial stability and long-term goals.

0 views • 1 slides


Understanding Open Channel Flow and Mannings Equation

This review covers hydraulic devices such as orifices, weirs, sluice gates, siphons, and outlets for detention structures. It focuses on open channel flow, including uniform flow and varied flow, and explains how to use Mannings equation for calculations related to water depth, flow area, and veloci

0 views • 43 slides


Exploring Membrane Potential Densities and the Fokker-Planck Equation in Neural Networks

Delve into the concepts of membrane potential densities and the Fokker-Planck Equation in neural networks, covering topics such as integrate-and-fire with stochastic spike arrival, continuity equation for membrane potential density, jump and drift flux, and the intriguing Fokker-Planck Equation.

0 views • 29 slides


Nanoparticle-Enhanced Readout for Crystal Calorimetry: BaF2 Scintillation Detection

Nanoparticles with specific absorption and emission properties are explored to enhance the readout process for BaF2 crystal calorimetry, focusing on detecting the fast 220nm UV component. The goal is to achieve a large Stokes shift to the visible wavelength range for efficient detection, while minim

0 views • 7 slides


Leapfrog Scheme for Advection Equation

The provided images illustrate the Leapfrog scheme applied to an advection equation, focusing on the center method in time and space. The stability of the method is analyzed with assumptions regarding the behavior of the solution. Through the exploration of Courant numbers and CFL conditions, the st

0 views • 25 slides


Unveiling Untold Stories of Black American Involvement in Armed Conflicts

Discover the overlooked narratives of African Americans in historic armed conflicts, from the War of 1812 to Civil War battlefields. Explore individual accounts such as Ann Stokes, challenging conventional perceptions and benefiting from preservation programs like the American Battlefield Protection

0 views • 22 slides


Wealth Advisors in Bellevue WA | Avier Wealth Advisors

\nAvier Wealth Advisors offers personalized financial solutions from top wealth advisors in Bellevue, WA, helping you achieve long-term financial goals with expert guidance.

0 views • 2 slides


Wealth Advisors in Bellevue WA | Avier wealth advisors

\nAvier Wealth Advisors offers personalized financial solutions from top wealth advisors in Bellevue, WA, helping you achieve long-term financial goals with expert guidance.

0 views • 2 slides


Understanding Turbulence in Fluid Dynamics: A Comprehensive Exploration

Exploring the complexities of turbulence in fluid dynamics, from the Navier-Stokes equations to subgrid transport and turbulent diffusion. Insights into the transition from laminar to turbulent flow, subgrid scale importance, and treatment of small-scale eddies are discussed. The impact of turbulenc

0 views • 9 slides


Wealth Advisors in Bellevue WA | Avier wealth advisors

\nAvier Wealth Advisors offers personalized financial solutions from top wealth advisors in Bellevue, WA, helping you achieve long-term financial goals with expert guidance.

0 views • 2 slides


Excel Tutorial: Finding Trendline Equation and Calculating Rates of Change

Learn how to find the equation of a trendline in Excel and use it to calculate rates of change. This step-by-step guide includes importing data, adding a trendline, displaying the equation, and interpreting it for analysis. Make the most of Excel's features for data analysis.

0 views • 11 slides


Linearized Boltzmann Equation in Statistical Mechanics

This lecture delves into the linearized Boltzmann equation and its applications in studying transport coefficients. The content covers the systematic approximation of transport coefficients, impact parameters of collisions, and the detailed solution for a dilute gas system. It explores the notation

0 views • 25 slides


Quantum Chemistry Learning Goals and Concepts

This content covers the learning goals and concepts of quantum chemistry leading up to the Schrodinger equation and potential energy wells, excluding the material on the hydrogen atom introduced later. It explores models of the atom, including observations of atomic spectra, the Bohr model, de Brogl

0 views • 22 slides


Analytical Solutions for 2D Heat Equation with Separation of Variables

Consider the steady-state 2D heat equation with constant thermal conductivity. Analyze analytical solutions using separation of variables method for a square plate with defined boundary conditions. Learn how to express the general form of solutions and apply them to the heat equation in Cartesian ge

0 views • 15 slides


Understanding Conservation of a Quantity in Fluid Motion

Today's lecture in Computational Earth Science delved into the Navier-Stokes Equation and the conservation of momentum in moving fluids. The discussion focused on the tricks involved in solving for pressure, dealing with repeating boundaries, and tracking eddies in channel flow. Through detailed ill

0 views • 44 slides


Dynamic Function for Basal Area of Trees Derived from Differential Equation

Mathematical methods presented by Braun and Simmons are used to derive a dynamic function for the basal area of individual trees from a production-theoretically motivated autonomous differential equation. The differential equation and general dynamic function are described, highlighting the relation

0 views • 45 slides


Understanding Vector Calculus II Concepts with Examples by Prof. Somesh Kr. Malhotra

Explore advanced topics in vector calculus including gradient, divergence, curl, and theorems like the Divergence Theorem and Stokes' Theorem. Follow along with examples presented in Cartesian, spherical, and cylindrical coordinates to deepen your understanding of vector calculus concepts.

0 views • 29 slides


Effects of Non-Spherical Ice Crystal Shape on Modeled Properties of Thin Tropical Tropopause Layer Cirrus

This study explores the impact of non-spherical ice crystal shapes on the properties of cirrus clouds in the thin tropical tropopause layer. Incorporating realistic ice crystal shapes into models affects fall speed, growth rate, and radiative absorption, influencing the time evolution of clouds. The

0 views • 38 slides