Ensemble models - PowerPoint PPT Presentation


Moving Towards Fully Ensemble-Derived Background-Error Covariances for NWP at ECCC

The transition from hybrid covariances to fully ensemble-derived background-error covariances for Numerical Weather Prediction (NWP) at Environment and Climate Change Canada (ECCC) is explored in this paper. It discusses the evolution of covariance formulations, the use of scale-dependent localizati

1 views • 20 slides


Global Climate Models

Scientists simulate the climate system and project future scenarios by observing, measuring, and applying knowledge to computer models. These models represent Earth's surface and atmosphere using mathematical equations, which are converted to computer code. Supercomputers solve these equations to pr

3 views • 15 slides



System Models in Software Engineering: A Comprehensive Overview

System models play a crucial role in software engineering, aiding in understanding system functionality and communicating with customers. They include context models, behavioural models, data models, object models, and more, each offering unique perspectives on the system. Different types of system

3 views • 33 slides


Understanding Input-Output Models in Economics

Input-Output models, pioneered by Wassily Leontief, depict inter-industry relationships within an economy. These models analyze the dependencies between different sectors and have been utilized for studying agricultural production distribution, economic development planning, and impact analysis of i

8 views • 7 slides


Understanding Models of Teaching in Education

Exploring different models of teaching, such as Carroll's model, Proctor's model, and others, that guide educational activities and environments. These models specify learning outcomes, environmental conditions, performance criteria, and more to shape effective teaching practices. Functions of teach

2 views • 20 slides


Understanding Models of Teaching for Effective Learning

Models of teaching serve as instructional designs to facilitate students in acquiring knowledge, skills, and values by creating specific learning environments. Bruce Joyce and Marsha Weil classified teaching models into four families: Information Processing Models, Personal Models, Social Interactio

1 views • 28 slides


Significance of Models in Agricultural Geography

Models play a crucial role in various disciplines, including agricultural geography, by offering a simplified and hypothetical representation of complex phenomena. When used correctly, models help in understanding reality and empirical investigations, but misuse can lead to dangerous outcomes. Longm

0 views • 8 slides


Understanding CGE and DSGE Models: A Comparative Analysis

Explore the similarities between Computable General Equilibrium (CGE) models and Dynamic Stochastic General Equilibrium (DSGE) models, their equilibrium concepts, and the use of descriptive equilibria in empirical modeling. Learn how CGE and DSGE models simulate the operation of commodity and factor

4 views • 15 slides


Enhancing Information Retrieval with Augmented Generation Models

Augmented generation models, such as REALM and RAG, integrate retrieval and generation tasks to improve information retrieval processes. These models leverage background knowledge and language models to enhance recall and candidate generation. REALM focuses on concatenation and retrieval operations,

1 views • 9 slides


Understanding Item Response Theory in Measurement Models

Item Response Theory (IRT) is a statistical measurement model used to describe the relationship between responses on a given item and the underlying trait being measured. It allows for indirectly measuring unobservable variables using indicators and provides advantages such as independent ability es

2 views • 32 slides


Understanding Discrete Optimization in Mathematical Modeling

Discrete Optimization is a field of applied mathematics that uses techniques from combinatorics, graph theory, linear programming, and algorithms to solve optimization problems over discrete structures. This involves creating mathematical models, defining objective functions, decision variables, and

0 views • 12 slides


Overview of Unsupervised Learning in Machine Learning

This presentation covers various topics in unsupervised learning, including clustering, expectation maximization, Gaussian mixture models, dimensionality reduction, anomaly detection, and recommender systems. It also delves into advanced supervised learning techniques, ensemble methods, structured p

1 views • 37 slides


Join the Yinghua Academy Chinese Music Ensemble Today!

Exciting opportunity to join the Yinghua Academy Chinese Music Ensemble led by award-winning director Gao Hong. Play Chinese instruments in a supportive environment at a minimal fee of $50. Rehearse, perform, and learn the rich tradition of Chinese classical music. Enhance skills, make new friends,

0 views • 14 slides


Observational Constraints on Viable f(R) Gravity Models Analysis

Investigating f(R) gravity models by extending the Einstein-Hilbert action with an arbitrary function f(R). Conditions for viable models include positive gravitational constants, stable cosmological perturbations, asymptotic behavior towards the ΛCDM model, stability of late-time de Sitter point, a

1 views • 12 slides


Understanding Wireless Propagation Models: Challenges and Applications

Wireless propagation models play a crucial role in characterizing the wireless channel and understanding how signals are affected by environmental conditions. This article explores the different propagation mechanisms like reflection, diffraction, and scattering, along with the challenges and applic

1 views • 14 slides


Hybrid Variational/Ensemble Data Assimilation for NCEP GFS

Hybrid Variational/Ensemble Data Assimilation combines features from the Ensemble Kalman Filter and Variational assimilation methods to improve the NCEP Global Forecast System. It incorporates ensemble perturbations into the variational cost function, leading to more accurate forecasts. The approach

0 views • 22 slides


Stochastic Coastal Regional Uncertainty Modelling II (SCRUM2) Overview

SCRUM2 project aims to enhance CMEMS through regional/coastal ocean-biogeochemical uncertainty modelling, ensemble consistency verification, probabilistic forecasting, and data assimilation. The research team plans to contribute significant advancements in ensemble techniques and reliability assessm

0 views • 28 slides


Models for On-line Control of Polymerization Processes: A Thesis Presentation

This presentation delves into developing models for on-line control of polymerization processes, focusing on reactors for similar systems. The work aims to extend existing knowledge on semi-batch emulsion copolymerization models, with a goal of formulating models for tubular reactors. Strategies, ba

0 views • 16 slides


Meteorological Data Analysis and Visualization Tools for Regional Weather Services

Explore advanced tools and technologies for analyzing and visualizing meteorological data in regional weather services. From observational variables to forecast and ensemble models, learn about different plotting methods, interactive features, and map layers used in the field of meteorology. Enhance

0 views • 6 slides


Insights on Observation Error, Ensemble Spread, and Radar Reflectivity in Meteorological Analysis

Explore topics such as temporal and spatial variability in observation error, ensemble spread analysis, baseline observations at DWD, estimation of observation errors, and radar reflectivity analysis. Gain insights into data processing and interpretation in meteorological studies.

0 views • 26 slides


Understanding N-Gram Models in Language Modelling

N-gram models play a crucial role in language modelling by predicting the next word in a sequence based on the probability of previous words. This technology is used in various applications such as word prediction, speech recognition, and spelling correction. By analyzing history and probabilities,

0 views • 101 slides


Grand Canonical Ensemble in Statistical Mechanics: Fermi-Dirac Distribution

Exploring the Fermi-Dirac distribution function and the Bose-Einstein distribution in the context of the grand canonical ensemble for non-interacting quantum particles. The lecture delves into the impact of particle spin on energy spectra, enumeration of possible states, self-consistent determinatio

0 views • 33 slides


NCEP GEFS Sub-Seasonal Forecasting Exercise

In this exercise, you will generate NCEP GEFS deterministic week 1 and week 2 forecasts for precipitation and temperature anomaly. The practical steps include downloading the necessary data and scripts, extracting the files, and accessing the GEFS model guidance. This exercise focuses on understandi

0 views • 12 slides


Understanding Information Retrieval Models and Processes

Delve into the world of information retrieval models with a focus on traditional approaches, main processes like indexing and retrieval, cases of one-term and multi-term queries, and the evolution of IR models from boolean to probabilistic and vector space models. Explore the concept of IR models, r

0 views • 65 slides


Hourly Short-Term Ensemble for Milwaukee/Sullivan, WI

Observations and models are blended to create an hourly short-term ensemble forecast for Milwaukee/Sullivan, WI. The ensemble includes elements like temperature, dew point, wind, precipitation, and more, providing valuable data for up to 24 hours ahead. Various models and observations are used in th

0 views • 37 slides


Understanding Cross-Classified Models in Multilevel Modelling

Cross-classified models in multilevel modelling involve non-hierarchical data structures where entities are classified within multiple categories. These models extend traditional nested multilevel models by accounting for complex relationships among data levels. Professor William Browne from the Uni

0 views • 13 slides


Innovative Approach for f5C Detection using Ensemble Neural Networks

Epigenetic modification 5-formylcytidine (f5C) plays a crucial role in biological processes. This study introduces f5C-finder, an ensemble neural network model, utilizing multi-head attention for precise f5C identification. By combining five distinct features extraction methods into an ensemble lear

0 views • 23 slides


Understanding General Equilibrium Models and Social Accounting Matrices

General Equilibrium Models (CGE) and Social Accounting Matrices (SAM) provide a comprehensive framework for analyzing economies and policies. This analysis delves into how CGE models help simulate various economic scenarios and their link to SAM, which serves as a key data input for the models. The

0 views • 50 slides


Advancements in Hydrologic Modeling for Enhanced Predictions

Explore the future of hydrologic modeling with a focus on distributed models, data assimilation, ensemble forecasts, and verification. Discover the potential benefits of continued research in physically based models for more accurate forecasts in various conditions. Uncover challenges facing hydrolo

0 views • 23 slides


Ensemble Modeling in Fishery Management: Insights from CAPAM Workshop

Structural uncertainty dominates fishery management decisions as discussed in the CAPAM workshop on data-weighting. The workshop highlighted the importance of ensemble modeling, protocols for ensemble membership, and communication of ensemble distributions for effective decision-making. Various case

0 views • 17 slides


Understanding Retrieval Models in Information Retrieval

Retrieval models play a crucial role in defining the search process, with various assumptions and ranking algorithms. Relevance, a complex concept, is central to these models, though subject to disagreement. An overview of different retrieval models like Boolean, Vector Space, and Probabilistic Mode

0 views • 56 slides


Accelerated Weighted Ensemble for Improved Protein Folding Statistics

The Accelerated Weighted Ensemble (AWE) approach addresses the challenges faced by traditional molecular dynamics (MD) simulations in generating statistically significant kinetic data for protein folding. By utilizing methods such as WorkQueue and Condor, AWE enhances efficiency and accuracy in stud

0 views • 14 slides


Understanding Scientific Models and Their Applications

Explore the world of scientific models through this informative content covering physical, mathematical, and conceptual models. Discover why models are used in science, their types, and potential limitations. Delve into the importance of utilizing models to comprehend complex concepts effectively.

0 views • 21 slides


Ensemble Learning in Data Mining: Tools and Techniques

Ensemble learning in data mining involves combining multiple models to improve predictive performance. Techniques such as bagging and boosting are utilized to create a single, more accurate model from diverse experts. The bias-variance decomposition is employed to analyze the impact of training set

0 views • 15 slides


Insights from Mars and Earth for Predictability with Ensemble Kalman Filtering

A collaborative effort between Penn State University and various teams explores the predictability of Martian and Earth weather phenomena using ensemble Kalman filtering. A comparison of key characteristics between Earth and Mars is provided, shedding light on their variable atmospheres and climates

0 views • 31 slides


NCEP Regional Ensembles Review Summary

Completed WCOSS transition of both SREF and NARRE-TL in production, with upgrades and fixes for improved ensemble forecasting. Delivered interim upgrade packages for SREF, planned future upgrades, and introduced an experimental NCEP Storm-Scale Ensemble. Performance evaluation in a heavy rain event

0 views • 20 slides


Overview of White Label Truck Platooning Specifications

White Label Truck Platooning involves driving trucks at short inter-vehicle distances for extended periods, creating a system of interconnected systems with specific requirements. The driver cannot be solely responsible for immediate intervention during critical events, necessitating a unique automa

0 views • 8 slides


Understanding Composite Models in Building Complex Systems

Composite models are essential in representing complex entities by combining different types of models, such as resource allocation, transport, and assembly models. Gluing these models together allows for a comprehensive representation of systems like the milk industry, where raw materials are trans

0 views • 27 slides


Grandpa Dan and Other Characters' Musical Ensemble

Ensemble featuring Grandpa Dan on the bass, Nicki on the glockenspiel, various other characters playing unique instruments like the guiro, finger cymbals, and more, all coming together to create a harmonious symphony. Enjoy the orchestration of different sounds and characters in this delightful perf

0 views • 9 slides


Accelerating Local Ensemble Tangent Linear Models

This research focuses on accelerating Local Ensemble Tangent Linear Models with order reduction, exploring methods, results, and implications for advancing numerical modeling in atmospheric and oceanic systems. The study addresses challenges in maintaining accurate TLMs and adjoints for coupled mode

0 views • 21 slides