Dnn inference optimization - PowerPoint PPT Presentation


L7: Neural Network 101 — DNN and GNN

Basics of neural networks including DNN and GNN Cong, their optimization opportunities, and their applications in machine learning. Presented by Callie Hao, Assistant Professor at Georgia Institute of Technology.

2 views • 41 slides


Enhancing Query Optimization in Production: A Microsoft Journey

Explore Microsoft's innovative approach to query optimization in production environments, addressing challenges with general-purpose optimization and introducing specialized cloud-based optimizers. Learn about the implementation details, experiments conducted, and the solution proposed. Discover how

2 views • 27 slides



Understanding Inference and Vyapti in Logic

Inference, known as Anumana in Sanskrit, is the process of deriving knowledge based on existing information or observations. It can be used for personal understanding or to demonstrate truths to others. An inference may be SvArtha (for oneself) or ParArtha (for others). Vyapti, the invariable concom

1 views • 14 slides


Understanding Deep Generative Models in Probabilistic Machine Learning

This content explores various deep generative models such as Variational Autoencoders and Generative Adversarial Networks used in Probabilistic Machine Learning. It discusses the construction of generative models using neural networks and Gaussian processes, with a focus on techniques like VAEs and

9 views • 18 slides


Understanding Inference in Indian Philosophy

In Indian philosophy, inference is considered one of the six ways to attain true knowledge. It involves three constituents: Hetu (middle term), Sadhya (major term), and Paksha (minor term). The steps of inference include apprehension of the middle term, recollection of the relation between middle an

11 views • 8 slides


Introduction to Optimization in Process Engineering

Optimization in process engineering involves obtaining the best possible solution for a given process by minimizing or maximizing a specific performance criterion while considering various constraints. This process is crucial for achieving improved yields, reducing pollutants, energy consumption, an

10 views • 52 slides


Understanding Resolution in Logical Inference

Resolution is a crucial inference procedure in first-order logic, allowing for sound and complete reasoning in handling propositional logic, common normal forms for knowledge bases, resolution in first-order logic, proof trees, and refutation. Key concepts include deriving resolvents, detecting cont

2 views • 12 slides


Understanding Swarm Intelligence: Concepts and Applications

Swarm Intelligence (SI) is an artificial intelligence technique inspired by collective behavior in nature, where decentralized agents interact to achieve goals. Swarms are loosely structured groups of interacting agents that exhibit collective behavior. Examples include ant colonies, flocking birds,

2 views • 88 slides


Understanding the Scope of Inference in Statistical Studies

Statistical studies require careful consideration of the scope of inference to draw valid conclusions. Researchers need to determine if the study design allows generalization to the population or establishes cause and effect relationships. For example, a study on the effects of cartoons on children'

1 views • 15 slides


DNN Inference Optimization Challenge Overview

The DNN Inference Optimization Challenge, organized by Liya Yuan from ZTE, focuses on optimizing deep neural network (DNN) models for efficient inference on-device, at the edge, and in the cloud. The challenge addresses the need for high accuracy while minimizing data center consumption and inferenc

0 views • 13 slides


Understanding the Difference Between Observation and Inference

Learn to differentiate between observation (direct facts or occurrences) and inference (interpretations based on existing knowledge or experience) through examples such as the Sun producing heat and light (observation) and a dry, itchy skin leading to the inference that it is dry. The distinction be

2 views • 14 slides


Understanding Discrete Optimization in Mathematical Modeling

Discrete Optimization is a field of applied mathematics that uses techniques from combinatorics, graph theory, linear programming, and algorithms to solve optimization problems over discrete structures. This involves creating mathematical models, defining objective functions, decision variables, and

0 views • 12 slides


Generalization of Empirical Risk Minimization in Stochastic Convex Optimization by Vitaly Feldman

This study delves into the generalization of Empirical Risk Minimization (ERM) in stochastic convex optimization, focusing on minimizing true objective functions while considering generalization errors. It explores the application of ERM in machine learning and statistics, particularly in supervised

0 views • 11 slides


Optimization Techniques in Convex and General Problems

Explore the world of optimization through convex and general problems, understanding the concepts, constraints, and the difference between convex and non-convex optimization. Discover the significance of local and global optima in solving complex optimization challenges.

0 views • 24 slides


Understanding Optimization Techniques for Design Problems

Explore the basic components of optimization problems, such as objective functions, constraints, and global vs. local optima. Learn about single vs. multiple objective functions and constrained vs. unconstrained optimization problems. Dive into the statement of optimization problems and the concept

0 views • 96 slides


Navigating Statistical Inference Challenges in Small Samples

In small samples, understanding the sampling distribution of estimators is crucial for valid inference, even when assumptions are violated. This involves careful consideration of normality assumptions, handling non-linear hypotheses, and computing standard errors for various statistics. As demonstra

0 views • 19 slides


Optimizing DNN Pruning for Hardware Efficiency

Customizing deep neural network (DNN) pruning to maximize hardware parallelism can significantly reduce storage and computation costs. Techniques such as weight pruning, node pruning, and utilizing specific hardware types like GPUs are explored to enhance performance. However, drawbacks like increas

0 views • 27 slides


Understanding Rules of Inference in Logic

Dive into the world of logic with this detailed exploration of rules of inference. Learn about different types of arguments, such as Modus Ponens and Modus Tollens, and understand how to determine the validity of an argument. Discover the purpose of rules of inference and unravel the logic behind co

0 views • 17 slides


Insights into Recent Progress on Sampling Problems in Convex Optimization

Recent research highlights advancements in solving sampling problems in convex optimization, exemplified by works by Yin Tat Lee and Santosh Vempala. The complexity of convex problems, such as the Minimum Cost Flow Problem and Submodular Minimization, are being unraveled through innovative formulas

1 views • 47 slides


Understanding Expert Systems and Knowledge Inference

Expert Systems (ES) act as synthetic experts in specialized domains, emulating human expertise for decision-making. They can aid users in safety, training, or decision support roles. Inference rules and knowledge rules play key roles in ES, helping in problem-solving by storing facts and guiding act

0 views • 63 slides


Approximation Algorithms for Stochastic Optimization: An Overview

This piece discusses approximation algorithms for stochastic optimization problems, focusing on modeling uncertainty in inputs, adapting to stochastic predictions, and exploring different optimization themes. It covers topics such as weakening the adversary in online stochastic optimization, two-sta

0 views • 33 slides


Understanding Knowledge-Based Agents: Inference, Soundness, and Completeness

Inference, soundness, and completeness are crucial concepts in knowledge-based agents. First-order logic allows for expressive statements and has sound and complete inference procedures. Soundness ensures derived sentences are true, while completeness guarantees all entailed sentences are derived. A

0 views • 6 slides


Fast High-Dimensional Filtering and Inference in Fully-Connected CRF

This work discusses fast high-dimensional filtering techniques in Fully-Connected Conditional Random Fields (CRF) through methods like Gaussian filtering, bilateral filtering, and the use of permutohedral lattice. It explores efficient inference in CRFs with Gaussian edge potentials and accelerated

0 views • 25 slides


Probabilistic Graphical Models Part 2: Inference and Learning

This segment delves into various types of inferences in probabilistic graphical models, including marginal inference, posterior inference, and maximum a posteriori inference. It also covers methods like variable elimination, belief propagation, and junction tree for exact inference, along with appro

0 views • 33 slides


Optimizing Inference Time by Utilizing External Memory on STM32Cube for AI Applications

The user is exploring ways to reduce inference time by storing initial weight and bias tables in external Q-SPI flash memory and transferring them to SDRAM for AI applications on STM32Cube. They have questions regarding the performance differences between internal flash memory and external memory, r

0 views • 4 slides


Typed Assembly Language and Type Inference in Program Compilation

The provided content discusses the significance of typed assembly languages, certifying compilers, and the role of type inference in program compilation. It emphasizes the importance of preserving type information for memory safety and vulnerability prevention. The effectiveness of type inference me

0 views • 17 slides


Flower Pollination Algorithm: Nature-Inspired Optimization

Real-world design problems often require multi-objective optimization, and the Flower Pollination Algorithm (FPA) developed by Xin-She Yang in 2012 mimics the pollination process of flowering plants to efficiently solve such optimization tasks. FPA has shown promising results in extending to multi-o

0 views • 15 slides


Rules of Inference Exercise Solutions in Discrete Math

This content provides solutions to exercises involving rules of inference in discrete mathematics. The solutions explain how conclusions are drawn from given premises using specific inference rules. Examples include identifying whether someone is clever or lucky based on given statements and determi

0 views • 4 slides


Modern Likelihood-Frequentist Inference: A Brief Overview

The presentation by Donald A. Pierce and Ruggero Bellio delves into Modern Likelihood-Frequentist Inference, discussing its significance as an advancement in statistical theory and methods. They highlight the shift towards likelihood and sufficiency, complementing Neyman-Pearson theory. The talk cov

0 views • 22 slides


Hybrid Optimization Heuristic Instruction Scheduling for Accelerator Codesign

This research presents a hybrid optimization heuristic approach for efficient instruction scheduling in programmable accelerator codesign. It discusses Google's TPU architecture, problem-solving strategies, and computation graph mapping, routing, and timing optimizations. The technique overview high

0 views • 33 slides


Sequential Approximate Inference with Limited Resolution Measurements

Delve into the world of sequential approximate inference through sequential measurements of likelihoods, accounting for Hick's Law. Explore optimal inference strategies implemented by Bayes rule and tackle the challenges of limited resolution measurements. Discover the central question of refining a

0 views • 29 slides


Machine Learning Applications for EBIS Beam Intensity and RHIC Luminosity Maximization

This presentation discusses the application of machine learning for optimizing EBIS beam intensity and RHIC luminosity. It covers topics such as motivation, EBIS beam intensity optimization, luminosity optimization, and outlines the plan and summary of the project. Collaborators from MSU, LBNL, and

0 views • 23 slides


Bayesian Optimization at LCLS Using Gaussian Processes

Bayesian optimization is being used at LCLS to tune the Free Electron Laser (FEL) pulse energy efficiently. The current approach involves a tradeoff between human optimization and numerical optimization methods, with Gaussian processes providing a probabilistic model for tuning strategies. Prior mea

0 views • 16 slides


Understanding Bayesian Networks for Efficient Probabilistic Inference

Bayesian networks, also known as graphical models, provide a compact and efficient way to represent complex joint probability distributions involving hidden variables. By depicting conditional independence relationships between random variables in a graph, Bayesian networks facilitate Bayesian infer

0 views • 33 slides


Exploring Metalearning and Hyper-Parameter Optimization in Machine Learning Research

The evolution of metalearning in the machine learning community is traced from the initial workshop in 1998 to recent developments in hyper-parameter optimization. Challenges in classifier selection and the validity of hyper-parameter optimization claims are discussed, urging the exploration of spec

1 views • 32 slides


AI/ML Integration in IEEE 802.11 WLAN: Enhancements & Optimization

Discussing the connection between Artificial Intelligence (AI)/Machine Learning (ML) and Wireless LAN networks, this document explores how AI/ML can improve IEEE 802.11 features, enhance Wi-Fi performance through optimized data sharing, and enable network slicing for diverse application requirements

0 views • 11 slides


Automata for Query Optimization in Databases and AI

Explore the use of tree automata for reasoning, querying databases using logic languages, optimizing queries through relation algebra, and core problems in query optimization. Learn about data exchange on the web, inference of information from incomplete data, and the semantics of Datalog programs f

0 views • 44 slides


Fast Bayesian Optimization for Machine Learning Hyperparameters on Large Datasets

Fast Bayesian Optimization optimizes hyperparameters for machine learning on large datasets efficiently. It involves black-box optimization using Gaussian Processes and acquisition functions. Regular Bayesian Optimization faces challenges with large datasets, but FABOLAS introduces an innovative app

0 views • 12 slides


Understanding Price Optimization in Auto Insurance Markets

This presentation delves into the concept of price optimization in the auto insurance industry, covering actuarial, economic, and regulatory aspects. It addresses the controversy surrounding price optimization, various state definitions, concerns, and the use of sophisticated tools to quantify busin

5 views • 29 slides


Dynamic Crowd Simulation Using Deep Reinforcement Learning and Bayesian Inference

This paper introduces a novel method for simulating crowd movements by combining deep reinforcement learning (DRL) with Bayesian inference. By leveraging neural networks to capture complex crowd behaviors, the proposed approach incorporates rewards for natural movements and a position-based dynamics

0 views • 15 slides