Modelling Knowledge and Knowledge Representation

 
Modelling knowledge
 
 
Maxime Lefrançois, Antoine Zimmermann
Ecole des Mines de Saint-Etienne
 
1
 
Content
 
Introduction
Classification
Graph-based knowledge representation
 
2
 
Introduction
 
Why modelling knowledge?
make knowledge explicit
make it independent from a specific system
 
 
reusable in different systems
derive implicit information from explicit knowledge and facts
 
Why knowledge representation
Answer common needs that arise with the produced knowledge
-> exchange, query, infer, visualize ...
 
3
 
Introduction
 
Examples 
:
an app for learning how to cook and invent new recipes, and
a recipe search engine require knowledge about cooking and
recipes.
a electric vehicle charging planner requires knowledge about
the charging station, the driver needs, the electricity price..
 
4
 
Introduction
 
KR is applied to other domains
 
5
 
Introduction
 
Knowledge 
vs.
 data 
vs.
 information
Data
 
are just values (e.g., 19.2, “foo”, 2016-04-07), possibly in a
structure (e.g., a table)
Information
 
is what data is when interpreted by way of
knowledge (e.g., 19.2 is the temperature in °C in a room at a
certain time)
Knowledge
 
is what makes data into information (I know that the
sensor is a thermometer that has just stayed in my living room at
8 pm)
 
6
 
Introduction
General
knowledge
(e.g., A novel is a
narrative)
 
7
Specific data
(e.g., 
Harry
Potter and the
Philosopher's
Stone
 is a novel)
Conclusions
(e.g., 
Harry Potter
and the
Philosopher's
Stone
 is a
narrative)
 
+
 
=
 
What is this course 
not
 about?
 
Modelling knowledge is a task that is part of the field of
knowledge representation and reasoning 
(KR&R). In this course
we do 
not
:
talk much about reasoning and the links between KR&R and
logic (this is the topic of a course on logic or on AI)
discuss how knowledge-based systems are implemented
cover all techniques of knowledge modelling
 
8
 
This course is ...
 
… new, so it is going to evolve as it goes
 
 
please provide feedback early on
… (hopefully) minimally overlapping with things you’ve already
seen but has strong connections with:
the first year course on logics
the AI toolbox
the course on Semantic Web in the Computer science Major
 
9
 
Exercise
 
What kind of knowledge do you need for cooking?
Think of what would a robot need to do cook. What a person
needs to find recipes that are appropriate for them?
What knowledge is needed that can be used in other fields?
 
10
 
Classification systems
 
11
 
 
Tree of Portphyry
,
3rd century AD,
representing
Aristotle 
categories
 
Classification systems
 
Biological
taxonomy
 
12
 
Classification systems
 
Library classification
500 
Natural sciences and mathematics
510
 
Mathematics
516
 
Geometry
516.3
 
Analytic geometries
516.37
 
Metric differential geometries
516.375
 
Finsler Geometry
 
13
 
Classification systems
 
General knowledge:
 
Persons are Living-beings
Specific data:
 
Aristotle is a Person
Conclusion:
 
Aristotle is a Living-being
In first order logic:
 
x
.Person(
x
) 
 Living-being(
x
)
 
Person(
Aristotle
)
 
Living-being(
Aristotle
)
 
14
 
Classification systems: guidelines
 
A name can only be used for 
one 
class
A word does not necessarily correspond to a class and vice
versa
Use consistent naming convention (e.g., capital letters,
singular nouns or noun phrases)
Define classes by analogy: similar structure, similar features
 
15
 
Classification systems: exercise
 
Définir une hiérarchie à partir des concepts suivants :
 
 
Athléthisme, Course, Football, FootballAméricain, Natation,
NatationSynchronisée, Patinage, PatinageArtistique,
PatinageDeVitesse, Relai, Ski, Sport, SportArtistique,
SportCollectif, SportDeBalle, SportIndividuel, Tennis.
 
16
 
Graph-based knowledge
representation
 
Classes are not enough to represent most knowledge
Relations between entities are required
 
E.g., what ingredients are in a dish?
 
17
 
Graph-based knowledge
representation
 
Representing entities and their relationships:
mind maps
topic maps
semantic networks
conceptual graphs
RDF
 
18
 
Graph-based knowledge
representation
 
Semantic networks: Describe particular entities
e.g., John knows Sam and is the son of Henry
 
 
 
In FOL: 
knows(
John
,
Sam
) 
 son-of(
John
,
Henry
)
 
19
John
Sam
Henry
 
knows
 
son-of
 
Graph-based knowledge
representation
 
Exercises:
describe pizza recipe as a semantic network
how to describe the pizza that I made yesterday?
 
20
 
Graph-based knowledge
representation
 
Add two special relationships
 
is-a
 (between an entity and a class it belongs to)
 
kind-of
 (between a class and a superclass)
 
21
John
 
son-of
Henry
Person
 
is-a
 
is-a
Living-being
 
kind-of
 
Graph-based knowledge
representation
 
Meaning of 
is-a
 and 
kind-of
 
We would like that this graph:
 
 
 
 
 
 
logically implies:
 
22
John
 
son-of
Henry
Person
 
is-a
 
is-a
Living-being
 
kind-of
John
 
is-a
Living-being
 
Graph-based knowledge
representation
 
Meaning of 
is-a
 and 
kind-of
 
First interpretation:
m
eans in FOL: 
C
(
e
)
  for any 
e
 
and 
C
and
 
means: 
x
.
C
(
x
) 
 
D
(
x
)
 
Problem:
 in this case, 
C
 is a predicate symbol and 
e
 is a constant but in the
graph, they are both nodes. Nodes that are classes should be distinguished from
nodes that are entities
 
23
e
 
is-a
C
C
 
kind-of
D
 
Graph-based knowledge
representation
 
Meaning of 
is-a
 and 
kind-of
 
Second interpretation:
  
if
  
then
 
 
In FOL: 
e
C
D
.is-a(
e
,
C
) 
 kind-of(
C
,
D
) 
 is-a(
e
,
D
)
 
24
e
 
is-a
C
 
kind-of
D
e
 
is-a
D
 
Graph-based knowledge
representation
 
Exercise:
 
Complete your description of the cooking knowledge
model with 
is-a
 and 
kind-of
 
25
 
Graph representation: generalising
 
We have seen a formalism that can express that a particular
recipe (e.g., my mom’s omelette) has particular ingredients (e.g.,
4 eggs). How do we represent the fact that recipes, in general,
have ingredients?
 
26
myMumOmelette
 
hasIngredient
fourEggs
Recipe
 
is-a
 
is-a
Ingredient
 
hasIngredient
 
?
 
Graph representation: generalising
 
There are several interpretations of the relationship between classes
 
 
1)
The class 
Recipe
 itself relates to the class 
Ingredient
 by relation
hasIngredient
 
 
hasIngredient(
Recipe
,
Ingredient
)
2)
All recipes have some ingredients
x.
y
.Recipe(
x
) 
 Ingredient(
y
)
 
 hasIngredient(
x
,
y
)
 
or
x.
y
.is-a(
x,
Recipe) 
 is-a(
y
,Ingredient)
 
 hasIngredient(
x
,
y
)
3)
Recipes may have ingredients
 
27
Recipe
Ingredient
 
hasIngredient
 
Graph representation: generalising
 
There are several interpretations of the relationship between classes
 
 
4)
The relation 
hasIngredient
 only relates recipes to ingredients
x.
y
.hasIngredient(
x
,
y
) 
Recipe(
x
) 
 Ingredient(
y
)
 
or
x.
y
.hasIngredient(
x
,
y
)
 
is-a(
x,
Recipe) 
is-a(
y
,Ingredient)
 
28
Recipe
Ingredient
 
hasIngredient
 
Unknown values
 
What if I want to describe a recipe for which I do not know
the cooking time?
What if I want to say something about a recipe that does not
match a property of the class?
 
Open World Assumption
 
vs.
 
Closed World Assumption
 
29
 
Expressiveness vs. Complexity
tradeoff
 
Expressiveness comes at the cost of complexity:
Complexity of design
Complexity of understanding
Complexity of computation
Principle of least power:
Always choose the least expressive language that suits your
purposes
 
30
Slide Note

je suis Lynda TEMAL

Je suis chez sfeir depuis un an.

J’ai un doctorat de l’université de Rennes I.

Le sujet de la thèse modélisation d’ontologies pour le partage de données dans le domaine de la neuroimagerie.

Aujourd’hui je vais vous présenter une introduction au web semantique. appelé aussi web de données.

Embed
Share

Explore the significance of modelling knowledge through knowledge representation, making it explicit, independent, and reusable. Learn why knowledge representation is essential and how it facilitates exchange, query, inference, and visualization. Delve into examples of knowledge application in various domains and distinguish between data, information, and knowledge. Discover what specific data, conclusions, and general knowledge entail, and understand the scope of the course on modelling knowledge.

  • Modelling Knowledge
  • Knowledge Representation
  • Data Interpretation
  • Knowledge Application
  • Information Exchange

Uploaded on Sep 25, 2024 | 1 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. Download presentation by click this link. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

E N D

Presentation Transcript


  1. Modelling knowledge Maxime Lefran ois, Antoine Zimmermann Ecole des Mines de Saint-Etienne 1

  2. Content Introduction Classification Graph-based knowledge representation 2

  3. Introduction Why modelling knowledge? make knowledge explicit make it independent from a specific system reusable in different systems derive implicit information from explicit knowledge and facts Why knowledge representation Answer common needs that arise with the produced knowledge -> exchange, query, infer, visualize ... 3

  4. Introduction Examples : an app for learning how to cook and invent new recipes, and a recipe search engine require knowledge about cooking and recipes. a electric vehicle charging planner requires knowledge about the charging station, the driver needs, the electricity price.. 4

  5. Introduction KR is applied to other domains 5

  6. Introduction Knowledge vs. data vs. information Data are just values (e.g., 19.2, foo , 2016-04-07), possibly in a structure (e.g., a table) Information is what data is when interpreted by way of knowledge (e.g., 19.2 is the temperature in C in a room at a certain time) Knowledge is what makes data into information (I know that the sensor is a thermometer that has just stayed in my living room at 8 pm) 6

  7. Introduction Specific data (e.g., Harry Potter and the Philosopher's Stone is a novel) Conclusions (e.g., Harry Potter and the Philosopher's Stone is a narrative) General knowledge (e.g., A novel is a narrative) + = 7

  8. What is this course not about? Modelling knowledge is a task that is part of the field of knowledge representation and reasoning (KR&R). In this course we do not: talk much about reasoning and the links between KR&R and logic (this is the topic of a course on logic or on AI) discuss how knowledge-based systems are implemented cover all techniques of knowledge modelling 8

  9. This course is ... new, so it is going to evolve as it goes please provide feedback early on (hopefully) minimally overlapping with things you ve already seen but has strong connections with: the first year course on logics the AI toolbox the course on Semantic Web in the Computer science Major 9

  10. Exercise What kind of knowledge do you need for cooking? Think of what would a robot need to do cook. What a person needs to find recipes that are appropriate for them? What knowledge is needed that can be used in other fields? 10

  11. Classification systems Tree of Portphyry, 3rd century AD, representing Aristotle categories 11

  12. Classification systems Biological taxonomy 12

  13. Classification systems Library classification 500 Natural sciences and mathematics 510 Mathematics 516 Geometry 516.3 Analytic geometries 516.37 Metric differential geometries 516.375 Finsler Geometry 13

  14. Classification systems General knowledge: Persons are Living-beings Specific data: Aristotle is a Person Conclusion: Aristotle is a Living-being In first order logic: x.Person(x) Living-being(x) Person(Aristotle) Living-being(Aristotle) 14

  15. Classification systems: guidelines A name can only be used for one class A word does not necessarily correspond to a class and vice versa Use consistent naming convention (e.g., capital letters, singular nouns or noun phrases) Define classes by analogy: similar structure, similar features 15

  16. Classification systems: exercise D finir une hi rarchie partir des concepts suivants : Athl thisme, Course, Football, FootballAm ricain, Natation, NatationSynchronis e, Patinage, PatinageArtistique, PatinageDeVitesse, Relai, Ski, Sport, SportArtistique, SportCollectif, SportDeBalle, SportIndividuel, Tennis. 16

  17. representation Classes are not enough to represent most knowledge Relations between entities are required E.g., what ingredients are in a dish? 17

  18. representation Representing entities and their relationships: mind maps topic maps semantic networks conceptual graphs RDF 18

  19. representation Semantic networks: Describe particular entities e.g., John knows Sam and is the son of Henry John Sam Henry In FOL: knows(John,Sam) son-of(John,Henry) 19

  20. representation Exercises: describe pizza recipe as a semantic network how to describe the pizza that I made yesterday? 20

  21. representation Add two special relationships is-a (between an entity and a class it belongs to) kind-of (between a class and a superclass) Person Living-being John Henry 21

  22. representation Meaning of is-a and kind-of We would like that this graph: Person Living-being John Henry logically implies: Living-being John 22

  23. representation Meaning of is-a and kind-of First interpretation: C e means in FOL: C(e) for any e and C C D and means: x.C(x) D(x) Problem: in this case, C is a predicate symbol and e is a constant but in the graph, they are both nodes. Nodes that are classes should be distinguished from nodes that are entities 23

  24. representation Meaning of is-a and kind-of Second interpretation: if C e D then D e In FOL: e C D.is-a(e,C) kind-of(C,D) is-a(e,D) 24

  25. representation Exercise: Complete your description of the cooking knowledge model with is-a and kind-of 25

  26. Graph representation: generalising We have seen a formalism that can express that a particular recipe (e.g., my mom s omelette) has particular ingredients (e.g., 4 eggs). How do we represent the fact that recipes, in general, have ingredients? Recipe Ingredient ? myMumOmelette fourEggs 26

  27. Graph representation: generalising There are several interpretations of the relationship between classes Recipe Ingredient The class Recipe itself relates to the class Ingredient by relation hasIngredient hasIngredient(Recipe,Ingredient) All recipes have some ingredients x. y.Recipe(x) Ingredient(y) hasIngredient(x,y) or x. y.is-a(x,Recipe) is-a(y,Ingredient) hasIngredient(x,y) Recipes may have ingredients 1) 2) 3) 27

  28. Graph representation: generalising There are several interpretations of the relationship between classes Recipe Ingredient The relation hasIngredient only relates recipes to ingredients x. y.hasIngredient(x,y) Recipe(x) Ingredient(y) or x. y.hasIngredient(x,y) is-a(x,Recipe) is-a(y,Ingredient) 4) 28

  29. Unknown values What if I want to describe a recipe for which I do not know the cooking time? What if I want to say something about a recipe that does not match a property of the class? Open World Assumption vs. Closed World Assumption 29

  30. Expressiveness vs. Complexity tradeoff Expressiveness comes at the cost of complexity: Complexity of design Complexity of understanding Complexity of computation Principle of least power: Always choose the least expressive language that suits your purposes 30

Related


More Related Content

giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#