Mastering Generics in Effective Java: A Practical Guide for Java Programmers
Explore the world of generics in Java through Joshua Bloch's guidance in "Effective Java". Learn the importance of avoiding raw types, leveraging parameterized types for type safety, handling mixing of generic and raw types, and implementing wildcards for flexible and typesafe coding. Enhance your Java programming skills with key insights and examples provided in this comprehensive material.
Download Presentation
Please find below an Image/Link to download the presentation.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. Download presentation by click this link. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.
E N D
Presentation Transcript
Effective Java: 3rdEdition Generics Last Updated: Spring 2023
Agenda Material From Joshua Bloch Effective Java: Programming Language Guide Cover Items 26-31, 33 Generics Chapter Bottom Line: Generics are safer, than raw types But generics are also more complex Raw types are allowed for backwards compatibility 2 Generics
Item 26: Dont Use Raw Types in New Code A class (interface) with one or more type parameters is a generic class (interface) Examples: List is a raw type List<E> is a generic interface List<String> is a parameterized type String is the actual type parameter corresponding to E 3 Generics
Example: Replacing raw types // Now a raw collection type don t do this private final Collection stamps = ; // Contains only Stamps // Erroneous insertion of coin into stamp collection stamps.add(new Coin( )); // Oops! We re set up for ClassCastException later // Parameterized collection type - typesafe private final Collection<Stamp> stamps = ; stamps.add(new Coin( )); // result is instead a compile time error, which is good // Now a raw iterator type don t do this! for (Iterator I = stamps.iterator(); i.hasNext(); ) { Stamp s = (Stamp) i.next(); // Throws ClassCastException // Do something with the stamp } // for-each loop over parameterized collection typesafe for (Stamp s: stamps) { // No (explicit) cast // Do something with the stamp } 4 Generics
Example: Mixing generic and raw types // Uses raw type (List) fails at runtime public static void main(String[] args) { List<String> strings = new ArrayList<String>(); unsafeAdd(strings, new Integer(42)); String s = strings.get(0); //Exception from compiler generated cast } // note use of raw types private static void unsafeAdd(List list, Object o) { list.add(o); } // There is a compile time warning: Test.java:10: warning: unchecked call to add(E) in raw type List list.add(o); ^ // If we ignore the warning, and run the program, we get a ClassCastException // where the compiler inserted the cast // If we try the following, it won t compile (see Item 25) private static void unsafeAdd( List<Object> list, Object o) { list.add(o);} 5 Generics
Example: Using Wildcards // Use of raw type for unknown element type don t do this! static int numElementsInCommonSet (Set s1, Set s2) { int result = 0; for (Object o1: s1) { if (s2.contains(o1)) result ++; } return result; } // Unbounded wildcard type typesafe and flexible static int numElementsInCommonSet (Set<?> s1, Set<?> s2) { int result = 0; for (Object o1: s1) { if (s2.contains(o1)) result ++; } return result; } // We ll revisit this type of example in Item 27 6 Generics
Example: Using Wildcards // Do the question marks really buy you anything? // Answer: Wildcard is typesafe, // because you can t add *anything* (except null) to Collection<?> // Two exceptions: Raw types ok in Class Literals: List.class, not List<String>.class instanceof operator if (o instanceof Set) { // raw type ok Set<?> m = (Set<?>) o; // Wildcard type 1) 2) // Why the exceptions? Compatibility with old Java 7 Generics
Terminology Term Parameterized type Actual type parameter Generic type Formal type parameter Unbounded wildcard type Raw type Bounded type parameter Recursive type bound Bounded wildcard type Generic method Type token Example List<String> String List<E> E List<?> List <E extends Number> <T extends Comparable<T>> List<? extends Number> static <E> List<E> asList(E[] a)Item 27 String.class Item Item 23 Item 23 Items 23, 26 Item 23 Item 23 Item 23 Item 26 Item 27 Item 28 Item 29 8 Generics
Item 27: Eliminate Unchecked Warnings Generics result in many compiler warnings Eliminate them As a last resort, suppress the warnings Do so as at local a level as possible Options are class down to local declaration Use the @SuppressWarnings annotation Some are easy: Set<Lark> exaltation = new HashSet(); // warning Set<Lark> exaltation = new HashSet <Lark>(); // no warning 9 Generics
Example: Suppressing Warnings public <T> T[] toArray (T[] a) { if (a.length < size) return (T[]) Arrays.copyOf(elements, size, a.getClass()); System.arraycopy(elements, 0, a, 0, size); if (a.length > size) a[size] = null; return a; } The compiler generates a warning: ArrayList.java:305: warning [unchecked] unchecked cast found : Object[], required T[] return (T[]) Arrays.copyOf(elements, size, a.getClass()); Suppressing the warning: if (a.length < size) { // This cast is correct because the array we re creating // is of the same type as the one passed in, which is T[] @SuppressWarnings( unchecked ) T[] result = (T[]) Arrays.copyOf(elements, size, a.getClass()); return result; } 10 Generics
Item 28: Prefer Lists to Arrays Lists play well with generics Generic array creation not typesafe (hence illegal) No new List<E>[], new List<String>[] , or new E[] Arrays are covariant; generics are invariant If Sub is a subtype of Super Then Sub[] is a subtype of Super[] But List<Sub> is not a subtype of List<Super> Arrays are reified; generics are erased Generics are compile time only 11 Generics
Example: Covariance vs. Invariance // Fails at runtime Object[] objectArray = new Long[1]; objectArray[0] = I don t fit in! ; // Throws ArrayStoreException // Won t compile List<Object> o1 = new ArrayList<Long>(); o1.add( I don t fit in! ); // Incompatible types Not compiling is better than a runtime exception. This is basically an argument for why invariance is preferable to covariance for generics. Later, we ll see how to relax this. 12 Generics
Example: Illustrating type (non) safety // Why generic array creation is illegal won t compile 1) List<String>[] stringLists = new List<String>[1]; // won t compile 2) List<Integer> intList = Arrays.asList(42); 3) Object[] objects = stringLists; 4) objects[0] = intList; 5) String s = stringLists[0].get(0); // compiler generated cast to String Suppose 1) compiled (it won t) 2) Creates and initializes a List<Integer> with one element 3) Stores the List<String> object into an Object array variable, note, this is legal because arrays are covariant 4) Stores the List<Integer> into the sole element of the Object array this succeeds because generics are implemented by erasure. The runtime type is simply List[], so there is no exception 5) Now, we ve stored a List<Integer> instance into an array that is declared to hold only List<String> instances. So, we get a ClassCastException 13 Generics
Example: Chooser class // Chooser a class badly in need of generics public class Chooser { private final Object[] choiceArray; public Chooser(Collection choices) { choiceArray = choices.toArray(); } public Object choose() { Random rnd = ThreadLocalRandom.current(); return choiceArrary[rnd.nextInt(choiceArray.length)]; } } Flaw: client must always cast return value; hence no type safety Flaw: what if collection is empty? 14 Generics
Example: First cut at fixing // A first cut at making Chooser generic won t compile public class Chooser <T> { private final T[] choiceArray; public Chooser(Collection<T> choices) { choiceArray = choices.toArray(); // could fix with choiceArray = (T[]) choices.toArray(); } public T choose() { Random rnd = ThreadLocalRandom.current(); return choiceArrary[rnd.nextInt(choiceArray.length)]; } } Compiler objects to choiceArray = choices.toArray() ; Fix still yields a warning 15 Generics
Example: prefer lists to arrays // List-based chooser typesafe (plus handling the empty case well) // abstract invariant Chooser objects are never empty public class Chooser<T> { private final List<T> choiceList; // rep-inv: choiceList is not empty // reject empty collections to establish rep invariant public Chooser(Collection choices) { if (choices.size() == 0) throw new IAE( ); choiceList = new ArrayList<>(choices); } // now this method is total public T choose() { Random rnd = ThreadLocalRandom.current(); return choiceList.get(rnd.nextInt(choiceList.size())); } } 16 Generics
Item 29: Favor Generic Types Parameterize collection declarations Use the generic types Implementer has to work harder But clients have type safety Stack example: How to support this? public static void main (String[] args) { Stack<String> stack = new Stack<String>(); for (String arg: args) { stack.push(arg);} while (!stack.isEmpty()) { stack.pop() } } 17 Generics
Example: Converting collection to generics public class Stack { // Original Version no generics private Object [] elements; private int size = 0; private static final int CAP = 16; public Stack() { elements = new Object [CAP];} public void push( Object e ) { ensureCapacity(); elements [size++] = e; } public Object pop() { if (size == 0) { throw new ISE( ); } Object result = elements [--size]; elements[size] = null; return result; } // remainder of Stack omitted See Bloch 18 Generics
Example: Converting collection to generics public class Stack <E> { // First cut at generics won t work private E [] elements; // Alternate 2: Leave as Object private int size = 0; private static final int CAP = 16; public Stack() { elements = new E [CAP];} // error; generic array creation // Alternate 1: = new (E[]) Object [CAP];} // warning // @SuppressWarning( unchecked ) //public Stack() { elements = new (E[]) Object [CAP];} // warning suppressed public void push( E e ) { ensureCapacity(); elements [size++] = e; } public E pop() { if (size == 0) { throw new ISE( ); } E result = elements [--size]; // Error for Alternate 2; also cast and suppress warning elements[size] = null; return result; } 19 Generics
Item 30: Favor Generic Methods Just as classes benefit from generics So do methods Writing generic methods is similar to writing generic types 20 Generics
Example: Generic method // Uses raw types unacceptable! (Item 23) public static Set union (Set s1, Set s2) { Set result = new HashSet(s1); // Generates a warning result.addAll(s2); // Generates a warning return result; } // Generic method public static <E> Set <E> union (Set <E> s1, Set <E> s2) { Set <E> result = new HashSet <E> (s1); result.addAll(s2); return result; } // The first <E> is the type parameter list // Example from the java.util.Collection // The generics can get a bit redundant Map <String, List<String>> anagrams = new HashMap<String, List<String>>(); 21 Generics
Example: Recursive Type Bound (1) /* * Returns the maximum value in a list * what must be true of type T? * what exceptions are thrown and when? */ public static <?????????> T max (List <T> list) This is a great example because it is *so* simple. We re just finding the max value! Yet the corner cases are tricky. It s one of the rare places in Effective Java where Bloch errs. 22 Generics
Example: Recursive Type Bound (2) /* * what must be true of type T? */ public static <?????????> T max (List <T> list) 23 Generics
Example: Recursive Type Bound (3) /* * what exceptions are thrown and when? */ public static <T extends Comparable<T>> T max (List <T> list) @throws NPE if @throws NSEE (or IAE) if @throws CCE if 24 Generics
Example: Recursive Type Bound (4) /* * what exceptions are thrown and when? */ public static <T extends Comparable<T>> T max (List <T> list) @throws NPE if list is null or contains null values @throws NSEE (or IAE) if list is empty @throws CCE if list contains mutually incomparable objects 25 Generics
Example: Recursive Type Bound (5) // Returns the maximum value in a list uses recursive type bound public static <T extends Comparable<T>> T max (List <T> list) { Iterator <T> i = list.iterator(); T result = i.next(); while (i.hasNext()) { T t = i.next(); // Note: no need for a cast if (t.compareTo(result) > 0) result = t; } return result; } // Bloch s solution: How does he do on the contract? 26 Generics
Example: Recursive Type Bound (6) // Returns the maximum value in a list uses recursive type bound public static <T extends Comparable<T>> T max (List <T> list) { if (list.size() == 0) throw new NSEE( ); // or IAE T result = list.get(0); for (T t : list) { // simpler code, slightly less efficient, but correct! if (t.compareTo(result) > 0) result = t; } return result; } // One way to correct Bloch s solution 27 Generics
Item 31: Use bounded wildcards to increase API Flexibility public class Stack <E> { // First cut at generics won t work public Stack() public void push( E e ) public E pop() public boolean isEmpty() } // pushAll method without a wildcard type deficient! public void pushAll( Iterable<E> src) { for (E e : src) { push(e); } } // wildcard type for parameter that serves as an E producer public void pushAll( Iterable<? extends E> src) { for (E e : src) { push(e); } } // wildcard type for parameter that serves as an E consumer public void popAll ( Collection<? super E> dst) { while (!isEmpty()) { dst.add(pop()); } } 28 Generics
The PECS mnemonic // PECS producer extends, consumer super // Recall earlier example public static <E> Set <E> union (Set <E> s1, Set <E> s2) // Are parameters consumers or producers? ( Producers, so, extend) public static <E> Set <E> union (Set <? extends E> s1, Set <? extends E> s2) // Note that return type should still be Set<E>, not Set <? extends E> // otherwise, clients will have to use wildcards Set<Integer> integers = Set<Double> doublse = Set<Number> numbers = union ( integers, doubles); // compiler error Set<Number> numbers = union.<Number> ( integers, doubles); // type parameter works // max example public static <T extends Comparable<T>> T max (List <T> list ) // original public static <T extends Comparable<? super T>> T max (List<? extends T> list) // PECS 29 Generics
Item 33: Consider typesafe heterogeneous Containers // Typesafe heterogeneous container pattern implementation public class Favorites private Map<Class<?>, Object> favorites = new HashMap(<Class<?>, Object>(); public <T> void putFavorite(Class<T> type, T instance) { if (type == null) { throw new NPE } favorites.put (type, instance); } public <T> T getFavorite(Class<T> type) { return type.cast(favorites.get(type)); } // Fairly subtle stuff 30 Generics