Diagonalization in Linear Algebra

 
Diagonalization
 
(
對角化
)
 
Hung-yi Lee
Review
excluding zero vector
Review
Characteristic polynomial of A is
Factorization
 
Eigenvalue:
 
Eigenspace:
 
(dimension)
multiplicity
 
Outline
Diagonalizable
 
Not all matrices are diagonalizable
 
 
A
2
 = 0
 
If 
A
 = 
PDP
1
 for some invertible 
P
 and diagonal 
D
 
A
2
 = 
PD
2
P
1
 
= 0
 
 
D
2
 = 0
 
 
D
 = 0
 
A= 0
 
(?)
D is diagonal
 
=0
 
=0
 
=0
 
=0
Diagonalizable
If A is diagonalizable
Diagonalizable
If A is diagonalizable
There are n eigenvectors that form an invertible matrix
The eigenvectors of A can form a basis for R
n
.
There are n independent eigenvectors
 
=
 
=
 
=
Diagonalizable
If A is diagonalizable
 
How to diagonalize a matrix A?
 
The eigenvalues corresponding to the
eigenvectors in P form the 
 diagonal matrix 
D.
 
Find 
n
 independent eigenvectors corresponding if
possible, and form an invertible 
P
 
Step 1:
 
Step 2:
Diagonalizable
A set of eigenvectors that correspond to distinct
eigenvalues is linear independent.
Factorization
 
Eigenvalue:
 
Eigenspace:
 
(dimension)
 
……
 
……
Independent
Diagonalizable
A set of eigenvectors that correspond to distinct
eigenvalues is linear independent.
Assume dependent
 
v
k
 = 
c
1
v
1
+
c
2
v
2
+ 
 +
c
k
1
v
k
1
 
A
v
k
 = 
c
1
A
v
1
+
c
2
A
v
2
+ 
 +
c
k
1
A
v
k
1
 
k
v
k
 = 
c
1
1
v
1
+
c
2
2
v
2
+ 
 +
c
k
1
k
1
v
k
1
 
k
v
k
 = 
c
1
k
v
1
+
c
2
k
v
2
+ 
 +
c
k
1
k
v
k
1
 
(
k
)
 
-
 
0
 
= 
c
1
(
1
k
) 
v
1
+
c
2
(
2
k
)
v
2
+ 
 +
c
k
1
(
k
1
k
)
v
k
1
 
Not c
1 
= 
c
2 
= 
 = 
c
k
1
 = 0
 
Same eigenvalue
 
a contradiction
Diagonalizable
If A is diagonalizable
 
Eigenvalue:
 
Eigenspace:
 
……
 
……
Independent Eigenvectors
You can’t find more!
Diagonalizable - Example
Diagonalize a given matrix
 
characteristic polynomial is 
(
t
 + 1)
2
(
t
 
 3)
 
eigenvalues: 3, 
1
 
eigenvalue 3
 
eigenvalue 
1
 
A
 = 
PDP
1
,
where
Test for a Diagonalizable Matrix
An 
n
 x 
n
 matrix 
A
 is diagonalizable if and only if
both the following conditions are met
.
The characteristic polynomial of 
A
 factors into
a product of linear factors.
Factorization
For each eigenvalue 
 of 
A
, the multiplicity of 
 equals
the dimension of the corresponding eigenspace.
Independent Eigenvectors
 
Eigenvalue:
 
Eigenspace:
 
(dimension)
 
……
 
……
An 
n
 x 
n
 matrix 
A
 is diagonalizable 
 
=
Application of Diagonalization
If A is diagonalizable,
Example:
Study
IG
 
.03
 
.85
 
.97
Study
Study
IG
 
.15
 
.85
Study
IG
 
.85
 
.85
 
.15
 
.15
 
.03
 
.97
 
.727
 
 .273
 
……
 
……
 
.15
Study
Study
IG
.15
.85
Study
IG
.85
.85
.15
.15
.03
.97
.727
 .273
……
……
Diagonalizable
Diagonalize a given matrix
 
RREF
 
RREF
 
(invertible)
 
The beginning
condition does
not influence.
Diagonalization of Linear Operator
Example 1:
 
The standard matrix is
 
 the characteristic polynomial is 
(
t
 + 1)
2
(
t
 
 2)
 eigenvalues: 
1, 2
 
 
B
1
 
 
B
2
  is a basis of 
R
 
3
 
T
 is diagonalizable.
 
Eigenvalue -1:
 
Eigenvalue 2:
-t
-t
-t
det
Diagonalization of Linear Operator
Example 2:
The standard matrix is
 the characteristic polynomial is 
t
2
(
t
 + 2)
 eigenvalues: 0, 
2
 the reduced row echelon form of 
A
 
 
0
I
3
 = 
A
 is
 the eigenspaces corresponding to the eigenvalue 0 has the
     dimension 1 < 2 = algebraic multiplicity of the eigenvalue 0
 
T
 is not diagonalizable.
-t
-t
-t
det
Review
 
 
Cartesian
coordinate
system
 
Complex Function
 
Input
 
Output
 
Another
coordinate
system
 
Input’
 
output’
 
Simple Function
Flowchart
Cartesian
coordinate
system
 
similar
 
similar
Example: reflection operator 
T
 about the line 
y
 = (1/2)
x
 
y
 = (1/2)
x
 
y
 = (1/2)
x
Diagonalization of Linear Operator
Reference: Chapter 5.4
 
Properly
selected
 
Properly
selected
 
simple
Diagonalization of Linear Operator
If a linear operator T is diagonalizable
Properly
selected
Properly
selected
simple
Eigenvectors form
the good system
Diagonalization of Linear Operator
-1:
2:
Slide Note
Embed
Share

Discover the concept of diagonalization in linear algebra through eigenvectors, eigenvalues, and diagonal matrices. Learn the conditions for a matrix to be diagonalizable, the importance of eigenvectors in forming an invertible matrix, and the step-by-step process to diagonalize a matrix by finding independent eigenvectors and constructing the diagonal matrix. Explore the significance of eigenvectors forming a basis for R^n and the implications of diagonalizing a matrix.

  • Diagonalization
  • Linear Algebra
  • Eigenvectors
  • Eigenvalues
  • Diagonal Matrix

Uploaded on Aug 17, 2024 | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. Download presentation by click this link. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

E N D

Presentation Transcript


  1. Diagonalization () Hung-yi Lee

  2. Review If ?? = ?? (? is a vector, ? is a scalar) ? is an eigenvector of A ? is an eigenvalue of A that corresponds to ? Eigenvectors corresponding to ? are nonzero solution of (A In)v = 0 Eigenvectors corresponding to ? = ????(A In) ? eigenspace excluding zero vector Eigenspace of ?: Eigenvectors corresponding to ? + ? A scalar ? is an eigenvalue of A ??? ? ??? = 0

  3. Review Characteristic polynomial of A is ??? ? ??? Factorization multiplicity ?1? ?2 ?2 ? ?? ?? = ? ?1 ?1 ?2 ?? Eigenvalue: ?1 ?? Eigenspace: (dimension) ?2 ?? ?1 ?2

  4. Outline An nxn matrix A is called diagonalizable if ? = ??? 1 D: nxn diagonal matrix P: nxn invertible matrix Is a matrix A diagonalizable? If yes, find D and P Reference: Textbook 5.3

  5. Diagonalizable (?) A2= 0 Not all matrices are diagonalizable If A = PDP 1for some invertible P and diagonal D A2= PD2P 1= 0 D2= 0 D = 0 D is diagonal A= 0 =0 =0 2 ?1 0 0 ?? =0 ?1 0 ?2= ? = 0 2 ?? =0

  6. ? = ?1 ?? Diagonalizable ?1 0 0 ? = ?? If A is diagonalizable = ?1?1 ???? ? = ??? 1 ?? = ?? ?? = ??1 ??? ?? = ? ?1?1 = ??1?1 ???? ????? = ?1??1 = ?1?1 ????? ???? ???= ???? ?? is an eigenvector of A corresponding to eigenvalue ??

  7. ? = ?1 ?? Diagonalizable ?1 0 0 ? = ?? If A is diagonalizable ?? is an eigenvector of A corresponding to eigenvalue ?? ? = ??? 1 = There are n eigenvectors that form an invertible matrix = There are n independent eigenvectors = The eigenvectors of A can form a basis for Rn.

  8. ? = ?1 ?? Diagonalizable ?1 0 0 ? = ?? If A is diagonalizable ?? is an eigenvector of A corresponding to eigenvalue ?? ? = ??? 1 How to diagonalize a matrix A? Find n independent eigenvectors corresponding if possible, and form an invertible P Step 1: The eigenvalues corresponding to the eigenvectors in P form the diagonal matrix D. Step 2:

  9. Diagonalizable A set of eigenvectors that correspond to distinct eigenvalues is linear independent. ??? ? ??? Factorization ?1? ?2 ?2 ? ?? ?? = ? ?1 ?1 ?1 ?2 ?2 ?? Eigenvalue: ?? ?? ?2 ?1 Eigenspace: (dimension) Independent

  10. Diagonalizable A set of eigenvectors that correspond to distinct eigenvalues is linear independent. ?2 ?1 ?1 ?? ?? Eigenvalue: Assume dependent ?2 Eigenvector: a contradiction vk= c1v1+c2v2+ +ck 1vk 1 Avk= c1Av1+c2Av2+ +ck 1Avk 1 kvk= c1 1v1+c2 2v2+ +ck 1 k 1vk 1 kvk= c1 kv1+c2 kv2+ +ck 1 kvk 1 0 = c1( 1 k) v1+c2( 2 k)v2+ +ck 1( k 1 k)vk 1 Not c1 = c2 = = ck 1= 0 ( k) - a contradiction Same eigenvalue

  11. ? = ?1 ?? Diagonalizable ?1 0 0 ? = ?? If A is diagonalizable ?? is an eigenvector of A corresponding to eigenvalue ?? ? = ??? 1 ??? ? ??? = ? ?1 ?1? ?2 ?2 ? ?? ?? ?1 ?2 ?? Eigenvalue: Eigenspace: Basis for ?3 Basis for ?1 Basis for ?2 Independent Eigenvectors You can t find more!

  12. Diagonalizable - Example 1 0 0 0 0 2 1 = Diagonalize a given matrix 1 2 A characteristic polynomial is (t + 1)2(t 3) eigenvalues: 3, 1 A = PDP 1, where eigenvalue 3 0 1 1 0 1 1 1 0 0 0 1 = P B1= 1 eigenvalue 1 3 0 0 0 0 0 1 0 , 1 0 0 = 1 D B2= 0 1 1

  13. Test for a Diagonalizable Matrix An n x n matrix A is diagonalizable if and only if both the following conditions are met. The characteristic polynomial of A factors into a product of linear factors. ??? ? ??? = ? ?1 Factorization ?1? ?2 ?2 ? ?? ?? For each eigenvalue of A, the multiplicity of equals the dimension of the corresponding eigenspace.

  14. Independent Eigenvectors An n x n matrix A is diagonalizable = The eigenvectors of A can form a basis for Rn. = ??? ? ??? ?1? ?2 ?2 ? ?? ?? = ? ?1 ?1 ?1 ?2 ?2 ?? Eigenvalue: ?? = ?? = ?2 = ?1 Eigenspace: (dimension) ?1+ ?2+ + ??= ?

  15. Application of Diagonalization If A is diagonalizable, ? = ??? 1 ??= ???? 1 Example: .15 Study IG .85 .97 .03 .85 .85 Study Study Study .15 .03 .85 .727 .15 IG IG .97 .273 .15

  16. From Study IG .15 Study IG .85 .97 To Study .03 IG = ? .85 .85 Study Study Study .15 .03 .85 .15 .727 IG IG .97 .273 .15 .727 .273 1 0 .85 .15 ? = ??? 1 ??= ???? 1

  17. Diagonalizable Diagonalize a given matrix 1 = 1 p 1 RREF 1 (invertible) = p 2 5 RREF

  18. When ? , The beginning condition does not influence. 1/6 5/6 1/6 5/6 ??= 1/6 5/6 1/6 5/6 1/6 5/6 1/6 5/6 1/6 5/6 1/6 5/6 1 0 0 1 = =

  19. Diagonalization of Linear Operator ?1 ?2 ?3 8?1+ 9?2 6?1 7?2 3?1+ 3?2 ?3 Example 1: ? = det -t 8 9 0 0 The standard matrix is ? = -t 6 3 7 3 -t 1 the characteristic polynomial is (t + 1)2(t 2) eigenvalues: 1, 2 Eigenvalue -1: Eigenvalue 2: B1 B2is a basis of R3 T is diagonalizable. 1 1 0 0 0 1 3 B1= B2= , 2 1

  20. Diagonalization of Linear Operator ?1 ?2 ?3 ?1+ ?2+ 2?3 ?1 ?2 0 ? = Example 2: -t 1 1 0 1 2 0 0 det The standard matrix is ? = 1 0 -t -t the characteristic polynomial is t2(t + 2) eigenvalues: 0, 2 the reduced row echelon form of A 0I3= A is ?1 ?2= 0 ?3= 0 ?3 1 0 0 1 0 0 0 1 0 ?1 ?2 1 1 0 = ?1 the eigenspaces corresponding to the eigenvalue 0 has the dimension 1 < 2 = algebraic multiplicity of the eigenvalue 0 T is not diagonalizable.

  21. Review Simple Function Another coordinate system output Input Cartesian coordinate system Input Output Complex Function

  22. Flowchart ?B ?B ? ?B B coordinate system ? ? 1 Cartesian coordinate system ? ? ? ? ? = ? ?B? 1 ?B= ? 1? ? similar similar

  23. Example: reflection operator T about the line y = (1/2)x 0.4 0.2 0.2 0.4 ? =2 1 2 ? 1= ?2= 1 1 y = (1/2)x 2 ?B ?B ? ?B ?1=2 1 0 0 1 1 ? 1 ? y = (1/2)x ?2=0 ? =? 1 ? ? ? ?1=1 0 ? = ? ?B? 1

  24. Diagonalization of Linear Operator Reference: Chapter 5.4 ?B ?B ? ?B simple ? 1 ? Properly selected Properly selected ? ? ? ?

  25. Diagonalization of Linear Operator If a linear operator T is diagonalizable ?B ? ?B ? ?B simple Eigenvectors form the good system ? 1 ? 1 ? ? Properly selected Properly selected ? = ??? 1 ? ? ?

  26. Diagonalization of Linear Operator -1: 2: ?1 ?2 ?3 8?1+ 9?2 6?1 7?2 3?1+ 3?2 ?3 3 1 1 0 0 0 1 B2= ? = B1= 2 1 , ?B ?B ? ?B 1 0 0 0 0 0 2 1 0 1 1 1 0 0 0 1 3 1 1 0 0 0 1 3 2 1 2 1 8 9 0 0 6 3 7 3 1 ? ? ?

More Related Content

giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#