Determining Triangle Possibility

 
01.29.2017
 
AGENDA
 
Ticket in the door
Cornell notes
Guided Practice
Wrap-up
 
TICKET IN THE DOOR
 
Format your
paper for
Cornell Notes.
Topic: Triangles
E.Q. How can I
determine if  a
triangle is
possible?
 
D
e
t
e
r
m
i
n
i
n
g
 
i
f
 
a
T
r
i
a
n
g
l
e
 
i
s
 
P
o
s
s
i
b
l
e
 
https://www.youtube.com/watch?v=jknrgQga
quM&list=PLmdFyQYShrjd51PR7FLTzUc1H_9S-
a1c5
 
https://www.youtube.com/watch?v=jknrgQga
quM&list=PLmdFyQYShrjd51PR7FLTzUc1H_9S-
a1c5
 
 
R
e
c
a
l
l
 
t
h
a
t
 
t
r
i
a
n
g
l
e
s
 
c
a
n
 
b
e
 
c
l
a
s
s
i
f
i
e
d
 
a
c
c
o
r
d
i
n
g
 
t
o
 
t
h
e
i
r
s
i
d
e
 
l
e
n
g
t
h
s
 
a
n
d
 
t
h
e
 
m
e
a
s
u
r
e
 
o
f
 
t
h
e
i
r
 
a
n
g
l
e
s
.
 
S
i
d
e
s
:
S
c
a
l
e
n
e
 
-
 
n
o
 
s
i
d
e
s
 
a
r
e
 
c
o
n
g
r
u
e
n
t
I
s
o
s
c
e
l
e
s
 
-
 
t
w
o
 
s
i
d
e
s
 
a
r
e
 
c
o
n
g
r
u
e
n
t
E
q
u
i
l
a
t
e
r
a
l
 
-
 
a
l
l
 
t
h
r
e
e
 
s
i
d
e
s
 
a
r
e
 
c
o
n
g
r
u
e
n
t
 
A
n
g
l
e
s
:
A
c
u
t
e
 
-
 
a
l
l
 
t
h
r
e
e
 
a
n
g
l
e
s
 
a
r
e
 
a
c
u
t
e
R
i
g
h
t
 
-
 
c
o
n
t
a
i
n
s
 
o
n
e
 
r
i
g
h
t
 
a
n
g
l
e
O
b
t
u
s
e
 
-
 
c
o
n
t
a
i
n
s
 
o
n
e
 
o
b
t
u
s
e
 
a
n
g
l
e
 
T
h
e
r
e
 
i
s
 
a
n
o
t
h
e
r
 
p
r
o
p
e
r
t
y
 
t
h
a
t
 
a
p
p
l
i
e
s
 
t
o
 
t
r
i
a
n
g
l
e
s
:
 
T
h
e
 
s
u
m
 
o
f
 
t
h
e
 
l
e
n
g
t
h
s
 
o
f
 
a
n
y
 
t
w
o
 
s
i
d
e
s
 
o
f
 
a
 
t
r
i
a
n
g
l
e
 
i
s
g
r
e
a
t
e
r
 
t
h
a
n
 
t
h
e
 
l
e
n
g
t
h
 
o
f
 
t
h
e
 
t
h
i
r
d
 
s
i
d
e
.
 
W
h
a
t
 
d
o
e
s
 
t
h
i
s
 
m
e
a
n
?
 
I
f
 
y
o
u
 
t
a
k
e
 
t
h
e
 
t
h
r
e
e
 
s
i
d
e
s
 
o
f
 
a
 
t
r
i
a
n
g
l
e
 
a
n
d
 
a
d
d
 
t
h
e
m
 
i
n
p
a
i
r
s
,
 
t
h
e
 
s
u
m
 
i
s
 
g
r
e
a
t
e
r
 
t
h
a
n
 
(
n
o
t
 
e
q
u
a
l
 
t
o
)
 
t
h
e
 
t
h
i
r
d
 
s
i
d
e
.
 
I
f
 
t
h
a
t
 
i
s
 
n
o
t
 
t
r
u
e
,
 
t
h
e
n
 
i
t
 
i
s
 
n
o
t
 
p
o
s
s
i
b
l
e
 
t
o
 
c
o
n
s
t
r
u
c
t
 
a
t
r
i
a
n
g
l
e
 
w
i
t
h
 
t
h
e
 
g
i
v
e
n
 
s
i
d
e
 
l
e
n
g
t
h
s
.
 
E
x
a
m
p
l
e
:
 
D
e
t
e
r
m
i
n
e
 
i
f
 
s
i
d
e
s
 
o
f
 
l
e
n
g
t
h
 
5
 
c
m
,
 
8
 
c
m
 
a
n
d
 
1
2
 
c
m
 
c
a
n
f
o
r
m
 
a
 
t
r
i
a
n
g
l
e
?
 
T
e
s
t
 
a
l
l
 
t
h
r
e
e
 
p
a
i
r
s
 
t
o
 
s
e
e
 
i
f
 
t
h
e
 
s
u
m
 
i
s
 
g
r
e
a
t
e
r
:
5
 
+
 
8
 
>
 
1
2
5
 
+
 
1
2
 
>
 
8
8
 
+
 
1
2
 
>
 
5
 
 
 
 
1
3
 
>
 
1
2
 
 
 
 
 
 
1
7
 
>
 
8
2
0
 
>
 
5
 
Y
e
s
,
 
i
t
 
i
s
 
p
o
s
s
i
b
l
e
 
t
o
 
c
o
n
s
t
r
u
c
t
 
a
 
t
r
i
a
n
g
l
e
 
w
i
t
h
 
s
i
d
e
s
 
o
f
l
e
n
g
t
h
s
 
5
 
c
m
,
 
8
 
c
m
 
a
n
d
 
1
2
 
c
m
.
 
E
x
a
m
p
l
e
:
 
D
e
t
e
r
m
i
n
e
 
i
f
 
s
i
d
e
s
 
o
f
 
l
e
n
g
t
h
 
3
 
f
t
,
 
4
 
f
t
 
a
n
d
 
9
 
f
t
 
c
a
n
 
f
o
r
m
 
a
t
r
i
a
n
g
l
e
?
 
T
e
s
t
 
a
l
l
 
t
h
r
e
e
 
p
a
i
r
s
 
t
o
 
s
e
e
 
i
f
 
t
h
e
 
s
u
m
 
i
s
 
g
r
e
a
t
e
r
:
3
 
+
 
4
 
>
 
9
3
 
+
 
9
 
>
 
4
4
 
+
 
9
 
>
 
3
 
 
 
 
 
 
7
 
>
 
9
 
 
 
 
1
2
 
>
 
4
 
 
 
 
 
1
3
 
>
 
3
 
N
o
,
 
i
t
 
i
s
 
n
o
t
 
p
o
s
s
i
b
l
e
 
t
o
 
c
o
n
s
t
r
u
c
t
 
a
 
t
r
i
a
n
g
l
e
 
w
i
t
h
 
s
i
d
e
s
 
o
f
l
e
n
g
t
h
s
 
3
 
f
t
,
 
4
 
f
t
 
a
n
d
 
9
 
f
t
.
 
T
r
y
 
T
h
e
s
e
:
D
e
t
e
r
m
i
n
e
 
i
f
 
t
r
i
a
n
g
l
e
s
 
c
a
n
 
b
e
 
f
o
r
m
e
d
 
w
i
t
h
 
t
h
e
 
f
o
l
l
o
w
i
n
g
 
s
i
d
e
l
e
n
g
t
h
s
:
 
1
.
 
 
4
 
c
m
,
 
7
 
c
m
,
 
1
0
 
c
m
2
.
 
 
2
4
 
m
m
,
 
2
0
 
m
m
,
 
3
0
 
m
m
 
4
 
+
 
7
 
>
 
1
0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
4
 
+
 
2
0
 
>
 
3
0
4
 
+
 
1
0
 
>
 
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
4
 
+
 
3
0
 
>
 
2
0
7
 
+
 
1
0
 
>
 
4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
0
 
+
 
3
0
 
>
 
2
4
 
 
 
Y
E
S
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Y
E
S
 
3
.
 
 
7
 
f
t
,
 
9
 
f
t
,
 
1
6
 
f
t
4
.
 
 
9
 
i
n
,
 
1
3
 
i
n
,
 
2
4
 
i
n
 
7
 
+
 
9
 
=
 
1
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
+
 
1
3
 
<
 
2
4
7
 
+
 
1
6
 
>
 
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
+
 
2
4
 
>
 
1
3
1
6
 
+
 
9
 
>
 
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
3
 
+
 
2
4
 
>
 
9
N
O
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
N
O
 
1
 
D
e
t
e
r
m
i
n
e
 
i
f
 
s
i
d
e
s
 
o
f
 
l
e
n
g
t
h
 
5
 
m
m
,
 
1
4
 
m
m
a
n
d
 
1
9
 
m
m
 
c
a
n
 
f
o
r
m
 
a
 
t
r
i
a
n
g
l
e
.
 
 
B
e
 
p
r
e
p
a
r
e
d
t
o
 
s
h
o
w
 
y
o
u
r
 
w
o
r
k
!
 
A
 
 
 
 
Y
e
s
 
B
 
 
 
 
N
o
 
2
 
D
e
t
e
r
m
i
n
e
 
i
f
 
s
i
d
e
s
 
o
f
 
l
e
n
g
t
h
 
6
 
i
n
,
 
9
 
i
n
 
a
n
d
 
1
4
i
n
 
c
a
n
 
f
o
r
m
 
a
 
t
r
i
a
n
g
l
e
.
 
 
B
e
 
p
r
e
p
a
r
e
d
 
t
o
 
s
h
o
w
y
o
u
r
 
w
o
r
k
!
 
A
 
 
 
 
Y
e
s
 
B
 
 
 
 
N
o
 
3
 
D
e
t
e
r
m
i
n
e
 
i
f
 
s
i
d
e
s
 
o
f
 
l
e
n
g
t
h
 
5
 
y
d
,
 
1
3
 
y
d
 
a
n
d
2
1
 
y
d
 
c
a
n
 
f
o
r
m
 
a
 
t
r
i
a
n
g
l
e
.
 
 
B
e
 
p
r
e
p
a
r
e
d
 
t
o
s
h
o
w
 
y
o
u
r
 
w
o
r
k
!
 
A
 
 
 
 
Y
e
s
 
B
 
 
 
 
N
o
 
4
 
D
e
t
e
r
m
i
n
e
 
i
f
 
s
i
d
e
s
 
o
f
 
l
e
n
g
t
h
 
3
 
f
t
,
 
8
 
f
t
 
a
n
d
1
5
 
f
t
 
c
a
n
 
f
o
r
m
 
a
 
t
r
i
a
n
g
l
e
.
 
 
B
e
 
p
r
e
p
a
r
e
d
 
t
o
s
h
o
w
 
y
o
u
r
 
w
o
r
k
!
 
A
 
 
 
 
Y
e
s
 
B
 
 
 
 
N
o
 
5
 
D
e
t
e
r
m
i
n
e
 
i
f
 
s
i
d
e
s
 
o
f
 
l
e
n
g
t
h
 
5
 
i
n
,
 
5
 
i
n
 
a
n
d
9
 
i
n
 
c
a
n
 
f
o
r
m
 
a
 
t
r
i
a
n
g
l
e
.
 
 
B
e
 
p
r
e
p
a
r
e
d
 
t
o
s
h
o
w
 
y
o
u
r
 
w
o
r
k
!
 
A
 
 
 
 
Y
e
s
 
B
 
 
 
 
N
o
 
6
 
A
 
t
r
i
a
n
g
l
e
 
c
o
u
l
d
 
h
a
v
e
 
w
h
i
c
h
 
o
f
 
t
h
e
 
f
o
l
l
o
w
i
n
g
s
e
t
s
 
o
f
 
a
n
g
l
e
s
?
 
A
 
B
 
C
 
D
 
7
 
A
 
t
r
i
a
n
g
l
e
 
c
o
u
l
d
 
h
a
v
e
 
w
h
i
c
h
 
o
f
 
t
h
e
 
f
o
l
l
o
w
i
n
g
s
e
t
s
 
o
f
 
a
n
g
l
e
s
?
 
A
 
B
 
C
 
D
 
E
x
a
m
p
l
e
:
 
P
r
e
d
i
c
t
 
t
h
e
 
l
e
n
g
t
h
 
o
f
 
t
h
e
 
t
h
i
r
d
 
s
i
d
e
 
o
f
 
a
 
t
r
i
a
n
g
l
e
 
w
i
t
h
 
s
i
d
e
s
o
f
 
l
e
n
g
t
h
 
1
2
 
f
t
 
a
n
d
 
1
6
 
f
t
.
 
S
i
d
e
 
1
 
=
 
1
2
 
f
t
S
i
d
e
 
2
 
=
 
1
6
 
f
t
 
T
h
e
 
3
r
d
 
s
i
d
e
 
m
u
s
t
 
b
e
 
l
e
s
s
 
t
h
a
n
:
1
2
 
+
 
1
6
 
>
 
3
r
d
 
s
i
d
e
 
 
 
 
 
2
8
 
f
t
 
>
 
3
r
d
 
s
i
d
e
 
T
h
e
 
3
r
d
 
s
i
d
e
 
m
u
s
t
 
b
e
 
g
r
e
a
t
e
r
 
t
h
a
n
:
1
2
 
+
 
3
r
d
 
s
i
d
e
 
>
 
1
6
3
r
d
 
s
i
d
e
 
>
 
4
 
T
h
e
 
3
r
d
 
s
i
d
e
 
m
u
s
t
 
b
e
 
g
r
e
a
t
e
r
 
t
h
a
n
 
4
 
f
t
 
a
n
d
 
l
e
s
s
 
t
h
a
n
 
2
8
 
f
t
.
 
E
x
a
m
p
l
e
:
 
P
r
e
d
i
c
t
 
t
h
e
 
l
e
n
g
t
h
 
o
f
 
t
h
e
 
t
h
i
r
d
 
s
i
d
e
 
o
f
 
a
 
t
r
i
a
n
g
l
e
 
w
i
t
h
 
s
i
d
e
s
 
o
f
l
e
n
g
t
h
 
9
 
c
m
 
a
n
d
 
1
5
 
c
m
.
 
S
i
d
e
 
1
 
=
 
9
 
c
m
S
i
d
e
 
2
 
=
 
1
5
 
c
m
 
T
h
e
 
3
r
d
 
s
i
d
e
 
m
u
s
t
 
b
e
 
l
e
s
s
 
t
h
a
n
:
9
 
+
 
1
5
 
>
 
3
r
d
 
s
i
d
e
2
4
 
c
m
 
>
 
3
r
d
 
s
i
d
e
 
T
h
e
 
3
r
d
 
s
i
d
e
 
m
u
s
t
 
b
e
 
g
r
e
a
t
e
r
 
t
h
a
n
:
9
 
+
 
3
r
d
 
s
i
d
e
 
>
 
1
5
 
 
 
 
 
 
3
r
d
 
s
i
d
e
 
>
 
6
 
T
h
e
 
3
r
d
 
s
i
d
e
 
m
u
s
t
 
b
e
 
g
r
e
a
t
e
r
 
t
h
a
n
 
6
 
c
m
 
a
n
d
 
l
e
s
s
 
t
h
a
n
 
2
4
 
c
m
.
 
T
r
y
 
T
h
e
s
e
:
P
r
e
d
i
c
t
 
t
h
e
 
l
e
n
g
t
h
 
o
f
 
t
h
e
 
t
h
i
r
d
 
s
i
d
e
 
o
f
 
a
 
t
r
i
a
n
g
l
e
 
w
h
o
s
e
k
n
o
w
n
 
s
i
d
e
s
 
a
r
e
 
l
e
n
g
t
h
s
:
 
1
.
 
 
1
3
 
m
m
,
 
2
0
 
m
m
2
.
 
 
7
 
i
n
,
 
1
9
 
i
n
 
 
 
 
 
 
1
3
 
+
 
2
0
 
>
 
S
i
d
e
 
3
 
 
 
 
 
7
 
+
 
1
9
 
>
 
S
i
d
e
 
3
 
 
 
 
 
3
3
 
>
 
S
i
d
e
 
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
6
 
>
 
S
i
d
e
 
3
 
 
 
 
 
 
1
3
 
+
 
S
i
d
e
 
3
 
>
 
2
0
 
 
 
 
 
7
 
+
 
S
i
d
e
 
3
 
>
 
1
9
 
 
 
 
 
S
i
d
e
 
3
 
>
 
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
S
i
d
e
 
3
 
>
 
1
2
 
 
 
 
 
 
7
 
<
 
s
i
d
e
 
3
 
<
 
3
3
 
 
 
 
 
1
2
 
<
 
s
i
d
e
 
3
 
<
 
2
6
 
T
r
y
 
T
h
e
s
e
:
P
r
e
d
i
c
t
 
t
h
e
 
l
e
n
g
t
h
 
o
f
 
t
h
e
 
t
h
i
r
d
 
s
i
d
e
 
o
f
 
a
 
t
r
i
a
n
g
l
e
 
w
h
o
s
e
k
n
o
w
n
 
s
i
d
e
s
 
a
r
e
 
l
e
n
g
t
h
s
:
 
3
.
 
 
4
 
f
t
,
 
1
1
 
f
t
 
 
 
 
 
 
 
 
 
 
 
 
 
4
.
 
 
2
3
 
c
m
,
 
3
4
 
c
m
 
 
 
 
 
 
4
 
+
 
1
1
 
>
 
S
i
d
e
 
3
 
 
 
 
 
2
3
 
+
 
3
4
 
>
 
S
i
d
e
 
3
1
5
 
>
 
S
i
d
e
 
3
 
 
 
 
 
5
7
 
>
 
S
i
d
e
 
3
 
 
 
 
 
 
4
 
+
 
S
i
d
e
 
3
 
>
 
1
1
 
 
 
 
 
2
3
 
+
 
S
i
d
e
 
3
 
>
 
3
4
 
 
 
 
 
 
 
 
 
S
i
d
e
 
3
 
>
 
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
S
i
d
e
 
3
 
>
 
1
1
 
 
 
 
 
 
7
 
<
 
s
i
d
e
 
3
 
<
 
1
5
 
 
 
 
 
1
1
 
<
 
s
i
d
e
 
3
 
<
 
5
7
 
8
 
P
r
e
d
i
c
t
 
t
h
e
 
l
o
w
e
r
 
l
i
m
i
t
 
o
f
 
t
h
e
 
l
e
n
g
t
h
 
o
f
 
t
h
e
t
h
i
r
d
 
s
i
d
e
 
o
f
 
a
 
t
r
i
a
n
g
l
e
 
w
h
o
s
e
 
k
n
o
w
n
 
s
i
d
e
s
a
r
e
 
l
e
n
g
t
h
s
 
6
 
m
 
a
n
d
 
1
2
 
m
.
 
9
 
P
r
e
d
i
c
t
 
t
h
e
 
u
p
p
e
r
 
l
i
m
i
t
 
o
f
 
t
h
e
 
l
e
n
g
t
h
 
o
f
 
t
h
e
t
h
i
r
d
 
s
i
d
e
 
o
f
 
a
 
t
r
i
a
n
g
l
e
 
w
h
o
s
e
 
k
n
o
w
n
 
s
i
d
e
s
a
r
e
 
l
e
n
g
t
h
s
 
6
 
m
 
a
n
d
 
1
2
 
m
.
 
1
0
 
P
r
e
d
i
c
t
 
t
h
e
 
l
o
w
e
r
 
l
i
m
i
t
 
o
f
 
t
h
e
 
l
e
n
g
t
h
 
o
f
 
t
h
e
t
h
i
r
d
 
s
i
d
e
 
o
f
 
a
 
t
r
i
a
n
g
l
e
 
w
h
o
s
e
 
k
n
o
w
n
 
s
i
d
e
s
a
r
e
 
l
e
n
g
t
h
s
 
9
 
i
n
 
a
n
d
 
1
7
 
i
n
.
 
1
1
 
P
r
e
d
i
c
t
 
t
h
e
 
u
p
p
e
r
 
l
i
m
i
t
 
o
f
 
t
h
e
 
l
e
n
g
t
h
 
o
f
 
t
h
e
t
h
i
r
d
 
s
i
d
e
 
o
f
 
a
 
t
r
i
a
n
g
l
e
 
w
h
o
s
e
 
k
n
o
w
n
 
s
i
d
e
s
a
r
e
 
l
e
n
g
t
h
s
 
9
 
i
n
 
a
n
d
 
1
7
 
i
n
.
 
1
2
 
P
r
e
d
i
c
t
 
t
h
e
 
l
o
w
e
r
 
l
i
m
i
t
 
o
f
 
t
h
e
 
l
e
n
g
t
h
 
o
f
 
t
h
e
t
h
i
r
d
 
s
i
d
e
 
o
f
 
a
 
t
r
i
a
n
g
l
e
 
w
h
o
s
e
 
k
n
o
w
n
 
s
i
d
e
s
a
r
e
 
l
e
n
g
t
h
s
 
1
5
 
f
t
 
a
n
d
 
4
3
 
f
t
.
 
1
3
 
P
r
e
d
i
c
t
 
t
h
e
 
u
p
p
e
r
 
l
i
m
i
t
 
o
f
 
t
h
e
 
l
e
n
g
t
h
 
o
f
 
t
h
e
t
h
i
r
d
 
s
i
d
e
 
o
f
 
a
 
t
r
i
a
n
g
l
e
 
w
h
o
s
e
 
k
n
o
w
n
 
s
i
d
e
s
a
r
e
 
l
e
n
g
t
h
s
 
1
5
 
f
t
 
a
n
d
 
4
3
 
f
t
.
Slide Note
Embed
Share

Triangles can be classified by side lengths and angles. The sum of any two sides must be greater than the third for a triangle to be possible. Examples illustrate this concept with side lengths and tests to determine triangle construction possibility.

  • Triangles
  • Classification
  • Possibility
  • Side Lengths
  • Angles

Uploaded on Feb 16, 2025 | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.

E N D

Presentation Transcript


  1. AGENDA Ticket in the door TICKET IN THE DOOR Format your paper for Cornell Notes. Topic: Triangles E.Q. How can I determine if a triangle is possible? Cornell notes Guided Practice Wrap-up 01.29.2017

  2. Determining if a Triangle is Possible https://www.youtube.com/watch?v=jknrgQga quM&list=PLmdFyQYShrjd51PR7FLTzUc1H_9S- a1c5 a1c5 https://www.youtube.com/watch?v=jknrgQga quM&list=PLmdFyQYShrjd51PR7FLTzUc1H_9S-

  3. Recall that triangles can be classified according to their side lengths and the measure of their angles. Sides: Scalene - no sides are congruent Isosceles - two sides are congruent Equilateral - all three sides are congruent Angles: Acute - all three angles are acute Right - contains one right angle Obtuse - contains one obtuse angle

  4. There is another property that applies to triangles: The sum of the lengths of any two sides of a triangle is greater than the length of the third side. What does this mean? If you take the three sides of a triangle and add them in pairs, the sum is greater than (not equal to) the third side. If that is not true, then it is not possible to construct a triangle with the given side lengths.

  5. Example: Determine if sides of length 5 cm, 8 cm and 12 cm can form a triangle? Test all three pairs to see if the sum is greater: 5 + 8 > 12 5 + 12 > 8 13 > 12 17 > 8 8 + 12 > 5 20 > 5 Yes, it is possible to construct a triangle with sides of lengths 5 cm, 8 cm and 12 cm.

  6. Example: Determine if sides of length 3 ft, 4 ft and 9 ft can form a triangle? Test all three pairs to see if the sum is greater: 3 + 4 > 9 3 + 9 > 4 7 > 9 12 > 4 4 + 9 > 3 13 > 3 No, it is not possible to construct a triangle with sides of lengths 3 ft, 4 ft and 9 ft.

  7. Try These: Determine if triangles can be formed with the following side lengths: 1. 4 cm, 7 cm, 10 cm 2. 24 mm, 20 mm, 30 mm 4 + 7 > 10 4 + 10 > 7 7 + 10 > 4 YES 24 + 20 > 30 24 + 30 > 20 20 + 30 > 24 YES 3. 7 ft, 9 ft, 16 ft 4. 9 in, 13 in, 24 in 7 + 9 = 16 7 + 16 > 9 16 + 9 > 7 NO 9 + 13 < 24 9 + 24 > 13 13 + 24 > 9 NO

  8. 1 Determine if sides of length 5 mm, 14 mm and 19 mm can form a triangle. Be prepared to show your work! A Yes B No

  9. 2 Determine if sides of length 6 in, 9 in and 14 in can form a triangle. Be prepared to show your work! A Yes B No

  10. 3 Determine if sides of length 5 yd, 13 yd and 21 yd can form a triangle. Be prepared to show your work! A Yes B No

  11. 4 Determine if sides of length 3 ft, 8 ft and 15 ft can form a triangle. Be prepared to show your work! A Yes B No

  12. 5 Determine if sides of length 5 in, 5 in and 9 in can form a triangle. Be prepared to show your work! A Yes B No

  13. 6 A triangle could have which of the following sets of angles? A B C D

  14. 7 A triangle could have which of the following sets of angles? A B C D

  15. Example: Predict the length of the third side of a triangle with sides of length 12 ft and 16 ft. Side 1 = 12 ft Side 2 = 16 ft The 3rd side must be less than: 12 + 16 > 3rd side 28 ft > 3rd side The 3rd side must be greater than: 12 + 3rd side > 16 3rd side > 4 The 3rd side must be greater than 4 ft and less than 28 ft.

  16. Example: Predict the length of the third side of a triangle with sides of length 9 cm and 15 cm. Side 1 = 9 cm Side 2 = 15 cm The 3rd side must be less than: 9 + 15 > 3rd side 24 cm > 3rd side The 3rd side must be greater than: 9 + 3rd side > 15 3rd side > 6 The 3rd side must be greater than 6 cm and less than 24 cm.

  17. Try These: Predict the length of the third side of a triangle whose known sides are lengths: 1. 13 mm, 20 mm 2. 7 in, 19 in 13 + 20 > Side 3 7 + 19 > Side 3 33 > Side 3 26 > Side 3 13 + Side 3 > 20 7 + Side 3 > 19 Side 3 > 7 Side 3 > 12 7 < side 3 < 33 12 < side 3 < 26

  18. Try These: Predict the length of the third side of a triangle whose known sides are lengths: 3. 4 ft, 11 ft 4. 23 cm, 34 cm 4 + 11 > Side 3 23 + 34 > Side 3 15 > Side 3 57 > Side 3 4 + Side 3 > 11 23 + Side 3 > 34 Side 3 > 7 Side 3 > 11 7 < side 3 < 15 11 < side 3 < 57

  19. 8 Predict the lower limit of the length of the third side of a triangle whose known sides are lengths 6 m and 12 m.

  20. 9 Predict the upper limit of the length of the third side of a triangle whose known sides are lengths 6 m and 12 m.

  21. 10 Predict the lower limit of the length of the third side of a triangle whose known sides are lengths 9 in and 17 in.

  22. 11 Predict the upper limit of the length of the third side of a triangle whose known sides are lengths 9 in and 17 in.

  23. 12 Predict the lower limit of the length of the third side of a triangle whose known sides are lengths 15 ft and 43 ft.

  24. 13 Predict the upper limit of the length of the third side of a triangle whose known sides are lengths 15 ft and 43 ft.

More Related Content

giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#