Complexity of Holographic Metal-Insulator Transitions in Magnetotransport

 
 
Magnetotransport and Complexity
of Holographic Metal-Insulator
Transitions
 
Ji Teng
Institute of Theoretical Physics, Chinese
Academy of Sciences
 
Background
 
The mechanism of metal insulator transition is one of the oldest, yet one
of the fundamentally least understood problems in condensed matter
physics.
A good metal and a good insulator are very different physical systems,
and can be characterized by quite different elementary excitations.
Many theories have been proposed to understand metal-insulator
transition, such as MIT as a critical point, Scaling theories of disorder-
driven transitions, Order-parameter approaches to interaction-localization.
Mechanisms toward the MIT remain controversial and somewhat
incomplete[1112.6166]
In the spirit 
o
f EFT, a minimal holographic model of disorder-driven MIT
was proposed[1601.07897,1602.01067]. There are still some issues that
have not been understood well. Given the rich phenomenological features
of this set up, it is worth understanding the theory further and uncovering
some generic features.
Holographic model
The consistency of a theory imposes some constraints on the couplings[1601.07897]
 
DC Transport and Constraint
 
DC conductivity and resistivity in terms of horizon data
 
At 0th order:
 
DC Transport and Constraint
 
Include the leading correction coming from momentum dissipation
 
for  a general choice of  B and 
ρ
 
Given a generic constraint on Y, without referring to the non-linear details of the coupling
functions.
 
MIT and Scaling Behavior
 
Consider high T limit
 
MIT can be also triggered by increasing magnetic field B and disorder strength 
α
MIT by dialing charge density
 
MIT and Scaling Behavior
 
The resistivity scales with a single parameter:
 
Near MIT :
 
+: insulating behavior
 -: metallic behavior
 
The metallic and insulating curves are mirror symmetry:
 
mechanism responsible for transport in insulating and metallic phases are related.
 
MIT and Scaling Behavior
 
The collapse of resistivity data into two separated holds for broad interval temperatures.
MIT by dialing charge density at B=0
 
MIT and Scaling Behavior
 
The collapse of resistivity data into two separated holds for broad interval temperatures.
 
MIT and Scaling Behavior
 
The collapse of resistivity data into two separated holds for broad interval temperatures.
 
MIT and Scaling Behavior
 
The collapse of resistivity data into two separated holds for broad interval temperatures.
 
The metal-insulator transition induced by charge density, magnetic field and disorder.
 
Our holographic results agree qualitatively with the experimental observation in some two
dimensional samples and materials.
 
Phase Diagram
 
(a) good metal
 
All phases share the same symmetries of
the underlying theory, and thus beyond a
simple Ginzburg-Landau description.
Is there any other probe that is able to
characterize different phases?
 
(b) incoherent metal
 
(c) bad insulator
 
(d) good insulator
 
Phase Diagram
 
(a) good metal
Specific heat
 
(b) incoherent metal
 
(c) bad insulator
 
(d) good insulator
Charge
susceptibility
Complexity
of formation
 
Conclusion
 
Holography as a Theoretical Laboratory
 
Open questions
 
(a) To extend our studies to more complicated holographic systems which break translations
without retaining the homogeneity of the background.
 
(b) So far we limited ourselves to the electric conductivity, it is also worth studying the
thermal response and the mechanical response.
 
(c) Despite a lot of work on th
i
s model and generalizations, the physical nature of the dual
field theories is still not well understood.
 
(
d
) ……
 
Thanks
Slide Note
Embed
Share

The mechanism of metal-insulator transition is a fundamental yet complex problem in condensed matter physics. Various theories attempt to explain this transition, such as critical points, disorder-driven transitions, and interaction-localization approaches. A holographic model reveals key insights into the transition triggered by certain couplings. Understanding this theory further can uncover generic features and phenomena. The resistivity behavior also demonstrates distinct insulating and metallic characteristics based on specific parameters.

  • Metal-Insulator Transition
  • Holographic Model
  • Magnetotransport
  • Complexity
  • Condensed Matter Physics

Uploaded on Sep 21, 2024 | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. Download presentation by click this link. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

E N D

Presentation Transcript


  1. Magnetotransport and Complexity of Holographic Metal-Insulator Transitions Ji Teng Institute of Theoretical Physics, Chinese Academy of Sciences

  2. Background The mechanism of metal insulator transition is one of the oldest, yet one of the fundamentally least understood problems in condensed matter physics. A good metal and a good insulator are very different physical systems, and can be characterized by quite different elementary excitations. Many theories have been proposed to understand metal-insulator transition, such as MIT as a critical point, Scaling theories of disorder- driven transitions, Order-parameter approaches to interaction-localization. Mechanisms toward the MIT remain controversial and somewhat incomplete[1112.6166] In the spirit of EFT, a minimal holographic model of disorder-driven MIT was proposed[1601.07897,1602.01067]. There are still some issues that have not been understood well. Given the rich phenomenological features of this set up, it is worth understanding the theory further and uncovering some generic features.

  3. Holographic model The consistency of a theory imposes some constraints on the couplings[1601.07897] and ? ? < 0 plays a key role in triggering a metal-insulator transition. The background solutions:

  4. DC Transport and Constraint DC conductivity and resistivity in terms of horizon data Consider the clean limit ? 0 and parameterize the coupling Y and V: At 0th order:

  5. DC Transport and Constraint Include the leading correction coming from momentum dissipation ??? 0 ? 0 for a general choice of B and Given a generic constraint on Y, without referring to the non-linear details of the coupling functions.

  6. MIT and Scaling Behavior Consider high T limit ? ? < 0 (k>0) has a dramatic impact on MIT a critical charge density: ??= ?2+ ??2/2 ? < ??:???decreases with T increased, displaying insulating behavior ? > ??:??? increases with T increased, displaying metallic behavior MIT by dialing charge density MIT can be also triggered by increasing magnetic field B and disorder strength

  7. MIT and Scaling Behavior The resistivity scales with a single parameter: +: insulating behavior -: metallic behavior 3 12 2 2??|?2 ??2| with the scaling parameter ?0: ?0= The ???T curves for different ? can be made to overlap by ?0along T axis, yielding a collapse of the data onto two curves: an insulating behavior branch for ? < ??and a metallic branch for ? > ?? Near MIT : The metallic and insulating curves are mirror symmetry: mechanism responsible for transport in insulating and metallic phases are related.

  8. MIT and Scaling Behavior The collapse of resistivity data into two separated holds for broad interval temperatures. MIT by dialing charge density at B=0 ???T curves for different ? can be made to overlap along T axis with the scaling parameter ?0.

  9. MIT and Scaling Behavior The collapse of resistivity data into two separated holds for broad interval temperatures. MIT by dialing magnetic field at Landau-Level filling factor =? ?= 3/2 ???T curves for different ? can be made to overlap along T axis with the scaling parameter ?0.

  10. MIT and Scaling Behavior The collapse of resistivity data into two separated holds for broad interval temperatures. MIT by dialing disorder at ? = 0. ???T curves for different ? can be made to overlap along T axis with the scaling parameter ?0.

  11. MIT and Scaling Behavior The metal-insulator transition induced by charge density, magnetic field and disorder. The collapse of resistivity data into two separated holds for broad interval temperatures. Our holographic results agree qualitatively with the experimental observation in some two dimensional samples and materials.

  12. Phase Diagram All phases share the same symmetries of the underlying theory, and thus beyond a simple Ginzburg-Landau description. Is there any other probe that is able to characterize different phases? (a) good metal (b) incoherent metal (c) bad insulator (d) good insulator

  13. Phase Diagram Specific heat Charge susceptibility (a) good metal (b) incoherent metal (c) bad insulator Complexity of formation (d) good insulator

  14. Conclusion Holography as a Theoretical Laboratory (a) We propose a generic constraint on Y, without referring to the non-linear details of the coupling functions, that is ? ? > 0, 1/6 ? (0) 0. (b) We discuss the holographic MIT induced by charge density, magnetic field and disorder. Universal scaling behavior is uncovered, which agrees qualitatively with the experimental observation in some two dimensional samples and materials.

  15. Open questions (a) To extend our studies to more complicated holographic systems which break translations without retaining the homogeneity of the background. (b) So far we limited ourselves to the electric conductivity, it is also worth studying the thermal response and the mechanical response. (c) Despite a lot of work on this model and generalizations, the physical nature of the dual field theories is still not well understood. (d)

  16. Thanks

Related


More Related Content

giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#