Multicore cpus - PowerPoint PPT Presentation


Evolution of Parallel Programming in Computing

Moores Law predicted the doubling of transistor capacity every two years, benefitting software developers initially. However, hardware advancements can no longer ensure consistent performance gains. Parallel computing, leveraging multicore architecture, has emerged as a solution to optimize performa

7 views • 10 slides


Overview of Distributed Systems: Characteristics, Classification, Computation, Communication, and Fault Models

Characterizing Distributed Systems: Multiple autonomous computers with CPUs, memory, storage, and I/O paths, interconnected geographically, shared state, global invariants. Classifying Distributed Systems: Based on synchrony, communication medium, fault models like crash and Byzantine failures. Comp

9 views • 126 slides



Processes and Interactions

Processes in operating systems involve executing programs on CPUs, with each process having its own CPU. Processes run concurrently and can cooperate or compete for resources. Defining, creating, and managing processes is crucial for system efficiency and performance. Precedence relations, semaphore

1 views • 38 slides


Understanding Computer Components and Binary Numbers in Computing

Computer components like the case, power supply unit, motherboard, and storage devices play crucial roles in a computer system. CPUs consist of essential parts like the ALU, control unit, and registers. Binary numbers, a base-2 numbering system, simplify data representation and processing in computi

1 views • 44 slides


Understanding Threads in Computing

Exploring the concepts of parallel, distributed, and concurrent computing processes and how threads, cores, and CPUs work together. Delve into the terminology, implementation in Java and C#, synchronization, and the importance of leveraging multiple cores for enhanced performance.

0 views • 24 slides


Secure System Architecture Progression Framework Overview

Explore the evolution of secure system architectures, including multicore analysis and components like Cell Broadband Engine, Intel Core i, Freescale P4080. Dive into centralized processing systems, memory management, and hardware evaluations for improved processing power and security measures.

0 views • 30 slides


Technology Update and Market Trends Overview

Explore the latest advancements in technology update, general market trends, major players in the data center industry, future fabrication processes, server market shifts towards AI and cloud, the rise of liquid cooling, CPU developments, and trends in CPUs with increasing core counts and new archit

0 views • 28 slides


Overview of Distributed Operating Systems

Distributed Operating Systems (DOS) manage computer resources and provide users with convenient interfaces. Unlike centralized systems, DOS runs on multiple independent CPUs and prioritizes software over hardware. It ensures transparency and fault tolerance, with a focus on software error handling.

1 views • 36 slides


Exploring Automotive Networks and ECUs in the World of SOME/IP

In the realm of automotive networks, Electronic Control Units (ECUs) play a vital role in managing various aspects of a vehicle's systems. Modern ECUs are sophisticated with Systems on Chip (SoCs) containing CPUs, memory, I/O ports, and communication interfaces. With examples of different types of E

1 views • 101 slides


Understanding Multicore Processors: Hardware and Software Perspectives

This chapter delves into the realm of multicore processors, shedding light on both hardware and software performance issues associated with these advanced computing systems. Readers will gain insights into the evolving landscape of multicore organization, spanning embedded systems to mainframes. The

1 views • 36 slides


Stack Organization in Computer Systems

A stack is an ordered linear list where insertions and deletions occur at one end, known as the top. It follows the Last In First Out (LIFO) access method and is commonly used in CPUs. Key operations include Push (inserting) and Pop (deleting) items from the stack. Applications include evaluating ma

0 views • 5 slides


Understanding Interrupts in Embedded Systems

In embedded systems, interrupts play a crucial role in letting peripherals notify the CPU of state changes. They are events external to the current process that disrupt the normal flow of instruction execution, typically generated by hardware devices. By using interrupts, CPUs can efficiently handle

1 views • 12 slides


Understanding Shared Memory Architectures and Cache Coherence

Shared memory architectures involve multiple CPUs sharing one memory with a global address space, with challenges like the cache coherence problem. This summary delves into UMA and NUMA architectures, addressing issues like memory latency and bandwidth, as well as the bus-based UMA and NUMA shared m

0 views • 27 slides


Understanding the Need for Neural Network Accelerators in Modern Systems

Neural network accelerators are essential due to the computational demands of models like VGG-16, emphasizing the significance of convolution and fully connected layers. Spatial mapping of compute units highlights peak throughput, with memory access often becoming the bottleneck. Addressing over 300

0 views • 21 slides


Optimizing User-Space Network Services with F-Stack and FreeBSD TCP/IP Stack

F-Stack, a user-space network service using DPDK and FreeBSD TCP/IP stack, addresses challenges in handling service traffic like CDN and live streaming. By leveraging 25GbE, 40GbE, and 100GbE NICs, coupled with multi-core CPUs and kernel bypass techniques, F-Stack overcomes bottlenecks between user

1 views • 17 slides


SmartNIC Offloading for Distributed Applications

This presentation discusses offloading distributed applications onto SmartNICs using the iPipe framework. It explores the potential of programmable NICs to accelerate general distributed applications, characterizes multicore SmartNICs, and outlines the development and evaluation process. The study c

0 views • 31 slides


Understanding Modern GPU Computing: A Historical Overview

Delve into the fascinating history of Graphic Processing Units (GPUs), from the era of CPU-dominated graphics computation to the introduction of 3D accelerator cards, and the evolution of GPU architectures like NVIDIA Volta-based GV100. Explore the peak performance comparison between CPUs and GPUs,

5 views • 20 slides


FPGA Accelerator Design Principles and Performance Snapshot

This content explores the principles behind FPGA accelerator design, highlighting the extreme pipelining via systolic arrays that enables FPGAs to achieve high speeds despite lower clock frequencies compared to CPUs and GPUs. It delves into the application of Flynn's Taxonomy, performance snapshots

0 views • 17 slides


Comprehensive Guide to IEC1131-3 Ladder Diagram Programming

The origins of ladder diagram programming trace back to the graphical representation of electrical control systems, evolving from relay logic to logic circuits and finally incorporating CPUs for control decisions. A ladder diagram consists of rungs containing input and output instructions, executing

0 views • 21 slides


Understanding Virtualization in Modern Systems

Virtualization plays a crucial role in modern systems by improving portability, security, and efficient resource utilization. Historical uses, examples like IBM VM/370, and benefits in cloud environments are discussed. The working of virtualization, including naive software interpreters and protecte

1 views • 18 slides


Trends in Computer Organization and Architecture

This content delves into various aspects of computer organization and architecture, covering topics such as multicore computers, alternative chip organization, Intel hardware trends, processor trends, power consumption projections, and performance effects of multiple cores. It also discusses the sca

5 views • 28 slides


Understanding Shared Memory Architectures and Cache Coherence

Shared memory architectures involve multiple CPUs accessing a common memory, leading to challenges like the cache coherence problem. This article delves into different types of shared memory architectures, such as UMA and NUMA, and explores the cache coherence issue and protocols. It also highlights

2 views • 27 slides


Optimizing Word2Vec Performance on Multicore Systems

This research focuses on improving the efficiency of Word2Vec training on multi-core systems by enhancing floating point throughput, reducing overheads, and avoiding any accuracy loss. The study combines optimization techniques to achieve parallel performance and evaluates the accuracy of the result

0 views • 30 slides


A Comprehensive Guide to Computers and Their Evolution

Exploring the world of computers from its inception to modern-day innovations. Understand the history, functions, and advancements in computer technology, including details on CPUs, memory, laptops, and mobile devices like phones and tablets.

5 views • 10 slides


Memory Consistency Models and Sequential Consistency in Computer Architecture

Memory consistency models play a crucial role in ensuring proper synchronization and ordering of memory references in computer systems. Sequential consistency, introduced by Lamport in 1979, treats processors as interleaved processes on a shared CPU and requires all references to fit into a global o

1 views • 64 slides


Efficient Dynamic Memory Management for Embedded Multicore Systems

This content delves into the challenges of dynamic memory management in embedded multicore systems, emphasizing the importance of transaction-friendly approaches. It covers parallel data structures, the role of operating systems/libraries, and principles of memory allocation. Through illustrations a

0 views • 24 slides


Fast Multicore Key-Value Storage Study

Explore Cache Craftiness for Fast Multicore Key-Value Storage in a comprehensive study on building a high-performance KV store system. Learn about the feature wishlist, challenges with hard workloads, initial attempts with binary trees, and advancements with Masstree. Discover the contributions and

0 views • 38 slides


Understanding Cache Memory in Computer Systems

Explore the intricate world of cache memory in computer systems through detailed explanations of how it functions, its types, and its role in enhancing system performance. Delve into the nuances of associative memory, valid and dirty bits, as well as fully associative examples to grasp the complexit

0 views • 15 slides


A Model for Application Slowdown Estimation in On-Chip Networks

Problem of inter-application interference in on-chip networks in multicore processors due to NoC contention causes unfair slowdowns. The goal is to estimate NoC-level slowdowns in runtime and improve system fairness and performance. The approach includes NoC Application Slowdown Model (NAS) and Fair

0 views • 25 slides


A Software Memory Partition Approach for Eliminating Bank-level Interference in Multicore Systems

Memory requests from different threads can cause interferences in DRAM banks, impacting performance. The solution proposed involves partitioning DRAM banks between threads to eliminate interferences, leading to improved performance and energy savings.

0 views • 32 slides


Understanding Multi-Processing in Computer Architecture

Beginning in the mid-2000s, a shift towards multi-processing emerged due to limitations in uniprocessor performance gains. This led to the development of multiprocessors like multicore systems, enabling enhanced performance through parallel processing. The taxonomy of Flynn categories, including SIS

0 views • 46 slides


Understanding Advanced Computer Architecture in Parallel Computing

Covering topics like Instruction-Set Architecture (ISA), 5-stage pipeline, and Pipelined instructions, this course delves into the intricacies of advanced computer architecture, with a focus on achieving high performance by optimizing data flow to execution units. The course provides insights into t

0 views • 12 slides


Supercomputing in Plain English: Multicore Madness Workshop Details

Prepare for the "Supercomputing in Plain English: Multicore Madness" workshop with important instructions such as muting yourself, downloading slides in advance, and accessing the session via Zoom or YouTube. The session, led by Henry Neeman from the University of Oklahoma, covers supercomputing top

0 views • 97 slides


Overview of Nested Data Parallelism in Haskell

The paper by Simon Peyton Jones, Manuel Chakravarty, Gabriele Keller, and Roman Leshchinskiy explores nested data parallelism in Haskell, focusing on harnessing multicore processors. It discusses the challenges of parallel programming, comparing sequential and parallel computational fabrics. The evo

0 views • 55 slides


Study of Garbage Collector Scalability on Multicores

This study delves into the scalability challenges faced by garbage collectors on multicore hardware. It highlights how the performance of garbage collection does not scale effectively with the increasing number of cores, leading to bottlenecks in applications. The shift from centralized to distribut

0 views • 23 slides


Memory Model Safety of Programs Research

Explore the challenges and vulnerabilities in memory models of programs, emphasizing the importance of maintaining strict locking discipline for performance-critical code. The research discusses issues with relaxed memory models on multicore machines and provides examples of memory model vulnerabili

0 views • 14 slides


Multicore Memory Models and CPU Protection in Operating Systems

This content covers topics related to multicore memory models, synchronization, CPU protection levels in Dune-enabled Linux systems, and concurrency control in multithreaded programs. The material includes scenarios, questions, and diagrams to test understanding of these concepts in the context of t

0 views • 10 slides


Software Design Considerations for Multicore CPUs

Discussion on performance issues with modern multi-core CPUs, focusing on higher-end chips and boards. Exploring the concept of cores, chips, and boards in the context of multicore CPUs and their memory architectures.

0 views • 31 slides


Understanding KeyStone Multicore Navigator for Efficient Data Transport

This lesson provides insights into the KeyStone Multicore Navigator, explaining its advantages, architecture, functional components like descriptors and queues, and how to configure it for optimal performance. It covers the motivation behind its design, basic elements such as descriptors and queues,

0 views • 55 slides


Cooperative Cache Scrubbing for Efficient Memory Management in Multicore Systems

Cooperative Cache Scrubbing optimizes memory management in multicore systems by efficiently handling short-lived application objects and reducing unnecessary data writes to memory. By communicating semantic information to hardware caches, dead lines are scrubbed, dirty bits unset, and unnecessary fe

0 views • 40 slides