Lattice research - PowerPoint PPT Presentation


Overview of the FCC Software framework developments

Overview provides information on the developments of the FCC Software Framework (SF) project, including modular software design and simulation capabilities for the Future Circular Lepton Collider (FCC-ee). It covers topics such as beam-beam interactions, lattice descriptions, beam lifetime studies,

1 views • 24 slides


Principles and Applications of Symmetry in Magnetism Summer School Lecture

This lecture delves into the principles and applications of symmetry in magnetism, covering topics such as the symmetry of response tensors, transformations of tensors, time-reversal symmetry, and beyond point groups. It explores the symmetry of local effects, equivalent magnetic configurations, exp

2 views • 14 slides



Understanding Ionic and Covalent Bonding in Chemistry

Ionic bonding involves the transfer of electrons between a metal and a non-metal to form a giant lattice structure, like in sodium chloride and lithium oxide. Covalent bonding, on the other hand, occurs between non-metals, resulting in giant covalent structures or simple molecules. Examples such as

4 views • 79 slides


Mesh Chair in Delhi NCR - Bloomsbury Furniture

Bloomsbury Furniture, a chief supplier of ergonomic arrangements, presents the mesh chair in Delhi NCR, rethinking solace and style in office seating. Made with breathable lattice material, this seat guarantees ideal wind current, keeping you cool and agreeable all through your business day. Its erg

0 views • 2 slides


Difference Between Hydra Crane and Farana Crane

Hydra crane and Farana crane are two distinct types of cranes used for lifting and moving heavy loads. They differ in their operating mechanisms, design and functionality, lifting capacity, applications, and mobility. Hydra cranes operate on hydraulic mechanisms with telescopic booms, while Farana c

1 views • 9 slides


Understanding Metallic Bonding and Giant Metallic Lattices

Metallic bonding involves the attraction of positive metal ions to delocalized electrons, forming giant metallic lattices. In this structure, positive metal ions occupy fixed positions while electrons move freely throughout. This bonding is different from covalent bonding as it is delocalized, leadi

1 views • 19 slides


Understanding Antigen-Antibody Precipitation Reaction in Microbiology

Antigen-antibody precipitation reaction involves the formation of insoluble products when a soluble bivalent antibody interacts with a soluble antigen. This reaction leads to the formation of a visible precipitate known as a lattice. The mechanism of precipitation, including the prozone phenomenon,

0 views • 20 slides


Understanding Reciprocal Lattices in Crystal Structures

Explore the concept of reciprocal lattices in crystal structures, including non-rectangular lattices, Fourier space in 2D, Wigner-Seitz cells, Brillouin Zones, and the relationship between BCC and FCC structures. Learn about primitive lattice vectors, construction of the Brillouin Zone, and the sign

0 views • 49 slides


Understanding Zero Field Splitting in ESR Spectroscopy

Zero field splitting in ESR spectroscopy involves the relaxation times in ESR and how spin-lattice relaxation affects the spectral width. Discover how T1 value and spin lattice relaxation play a crucial role in observing sharp spectrum lines in EPR. Learn about line widths in ESR, spin dilution, and

0 views • 21 slides


Understanding Ionic Bonding and Lattice Energy

Explore the world of ionic bonding through images and explanations. Learn how electrons are transferred to form ions, the arrangement of ions in a crystal lattice, and the concept of lattice energy in ionic compounds. Discover the formation of formula units, examples of bond pairs, and the significa

1 views • 18 slides


Chemical Bonding Concepts and Structures Explanation

Explore the concepts of chemical bonding through dot-and-cross diagrams for molecules like Antimony Chloride (SbCl3) and Boron Tribromide, along with explanations on ionic lattice structures, covalent bonds, and electrical conductivity in substances like Aluminium Fluoride (AlF3). Understand the sha

0 views • 9 slides


Exploring the Free Electron and Nearly Free Electron Models in Solid State Physics

The Free Electron Model postulates that electrons in metals move freely without interacting with crystal ions, yielding insights on conductivities. Developed by Arnold Sommerfeld, it combines the Drude model with quantum mechanics. Conversely, the Nearly Free Electron Model leans on quantum mechanic

0 views • 22 slides


Exploration of Poetry Forms: Cicada, Lattice Lichens, Lyric Ode, and Poetic Analysis

Discover the beauty and intricacies of poetry through the exploration of images depicting Cicada, Lattice Lichens, Lyric Ode, and poetic analysis. Dive into the world of Odes, Lyrical poems, and analyze how poets use form and figurative language to express emotions and ideas. Uncover themes of natur

0 views • 6 slides


Understanding Lattice Constants in Materials Using DFT Calculations

Using Density Functional Theory (DFT) calculations, we explore how to determine the lattice constant of simple cubic, face-centered cubic (fcc), and hexagonal close-packed (hcp) materials. By fitting numerical data and analyzing energy considerations, we predict lattice constants for various metal s

0 views • 17 slides


Understanding Effective Mass in Crystals: Insights and Applications

The concept of effective mass in crystals delves into how electrons interact with the lattice potential, leading to altered particle masses that affect their behavior. This phenomenon is crucial in applying electrodynamics equations to charge carriers in solids, where the electron mass can differ fr

0 views • 18 slides


Performance of Post-Quantum Signatures: Analysis and Comparison

Explore the performance and characteristics of various post-quantum signature schemes including Lattice-based Dilithium, QTesla, Falcon, Symmetric Sphincs+, Picnic, Multivariate GEMSS, Rainbow, and more. Understand the implications of using these schemes in TLS, code signing, firmware updates, signe

0 views • 29 slides


Conformal Window in SU(3) Gauge Theories: IR Fixed Points and Scaling Hypothesis

Study of temporal propagator behaviors near fixed points, effective masses in free fermion examples, and strategies to find zero of beta functions in SU(3) gauge theories. Investigation of coupling constants and lattice sizes to determine existence of Banks-Zaks fixed point.

0 views • 11 slides


Understanding Crystal Structures: Unit Cell Definition and Wigner-Seitz Method

Learn essential concepts such as drawing Wigner-Seitz cells, identifying lattice directions, using direction/plane notations, locating directions/planes, and calculating distances in cubic or orthorhombic lattices. Explore various ways to define a unit cell within a lattice, including the Wigner-Sei

0 views • 25 slides


Investigation of QGP Formation at Fermi Lab CO Collider

Investigation led by L. Gutay at Purdue University, in collaboration with other researchers, presented evidence for de-confinement in high-energy collisions. The E-735 experiment at 1.8 TeV utilized advanced detectors and percolation theory to analyze multiparticle production, showcasing a potential

3 views • 20 slides


Workshop on Neutron Electric Dipole Moment: Theory to Experiment

Workshop on Neutron Electric Dipole Moment: Theory to Experiment will be held in Trento from August 1st to August 5th, 2022. The event aims to bridge the gap between theory and experiment in investigating the neutron EDM in Lattice QCD, Phenomenology, and Cosmology. Renowned speakers and financial s

1 views • 10 slides


Understanding Crystal Lattice Planes and Indices

Exploring the significance of crystal lattice planes in determining parameters, diffraction methods, and orthogonal systems. Discover how to identify planes and calculate distances in various lattices using Miller indices. Visual aids provide clarity on hexagonal structures and symmetry in crystallo

0 views • 22 slides


Examples of Web Lattice Design and Simulation Tools

Explore various web lattice design and simulation tools such as OPA by Paul Scherrer Institute, Elegant by Radiabeam, Pyton source, and more. Dive into applications like OPA Tracking, Non-linear Dynamics, and Phase Space visualization.

0 views • 11 slides


Understanding Signature Schemes in Cryptography

This content delves into various aspects of signature schemes, focusing on lattice signature schemes, digital signature schemes, Fiat-Shamir signature schemes, and the main idea behind signature schemes. It explores the concepts of correctness and security in digital signatures, the relevance of tra

0 views • 68 slides


Exploring Non-equilibrium Phenomena in Correlated Materials with Ultrafast Electron Probes

Investigating the transition mechanisms in materials such as Cu2S and Fe3O4 using ultrafast electron diffraction techniques to understand the interplay between electronic degrees of freedom and lattice dynamics. By monitoring structural evolution in the ultrafast time domain, the project aims to she

0 views • 16 slides


Exploration of Thermodynamics in SU(3) Gauge Theory Using Gradient Flow

Investigate the thermodynamics of SU(3) gauge theory through gradient flow, discussing energy-momentum stress pressure, Noether current, and the restoration of translational symmetry. The study delves into lattice regularization, equivalence in continuum theory, and measurements of bulk thermodynami

0 views • 40 slides


Cutting-edge Proton EDM Storage Ring Experiment Insights

Detailed overview of the Proton EDM Storage Ring Experiment by William Morse, highlighting challenges in neutron EDM sensitivity, magic momentum phenomenon in electric fields, and advancements in proton EDM experiment sensitivity. Explore the critical parameters related to axion physics, CP-violatio

1 views • 16 slides


Lattice Research Needs for Next-Generation HEP Facilities

Lattice research is vital for determining the characteristics of accelerators, colliders, and storage rings. High beam brightness is crucial for achieving goals like luminosity and beam loss reduction. The main barriers to higher beam brightness include instabilities and particle loss. General requi

0 views • 13 slides


Understanding Signatures, Commitments, and Zero-Knowledge in Lattice Problems

Explore the intricacies of lattice problems such as Learning With Errors (LWE) and Short Integer Solution (SIS), and their relation to the Knapsack Problem. Delve into the hardness of these problems and their applications in building secure cryptographic schemes based on polynomial rings and lattice

0 views • 44 slides


Dynamic Aperture Study for Ion Ring Lattice Optimization

This study focuses on optimizing the dynamic aperture of the ion ring lattice, covering topics such as correct chromaticity, aperture scanning, effects of alignment and field errors, and correction procedures. The comparison of various lattice schemes provides insights into aperture characteristics,

0 views • 25 slides


Understanding Trapdoor Sampling in Lattice-Based Cryptography

Explore simple lattice trapdoor sampling techniques for generating vector s such that As = t, without revealing the trapdoor in a protocol. Learn about algorithms and methods for constructing trapdoors, Gaussian distributions, and easily invertible matrices in the context of cryptographic protocols.

0 views • 19 slides


Fast High-Dimensional Filtering and Inference in Fully-Connected CRF

This work discusses fast high-dimensional filtering techniques in Fully-Connected Conditional Random Fields (CRF) through methods like Gaussian filtering, bilateral filtering, and the use of permutohedral lattice. It explores efficient inference in CRFs with Gaussian edge potentials and accelerated

0 views • 25 slides


Exploring Physical Properties of Ionic Substances through Model Building

Engage students aged 11-16 in an interactive activity to understand the physical properties of ionic substances such as high melting points, ability to conduct electricity, and brittleness. By building a model of an ionic lattice for sodium chloride and explaining how the structure relates to these

0 views • 5 slides


MI8 Line to RR Lattice Measurement and Matching Study

Study conducted by Ming-Jen Yang from the MI Department on Nov 28, 2018, involving measurements and matching of MI8 Line to RR Lattice. The study includes data on horizontal and vertical planes, dispersion data, frequency range, and orbit responses for various components.

0 views • 20 slides


Cache Attack on BLISS Lattice-Based Signature Scheme

Public-key cryptography, including the BLISS lattice-based signature scheme, is pervasive in digital security, from code signing to online communication. The looming threat of scalable quantum computers has led to the development of post-quantum cryptography, such as lattice-based cryptography, whic

0 views • 13 slides


Understanding Ionic Bonding and Lattice Energy in Chemistry

Chemical bonds play a crucial role in holding atoms together in molecules. This course explores the concept of chemical bonding, focusing on ionic bonds and lattice energy. Topics covered include the different types of chemical bonds, such as electrovalent and coordinate bonds, as well as the models

0 views • 22 slides


Rectangular Dissections and Edge-Flip Chains in Lattice Triangulations

Explore equitable rectangular dissections and their applications in VLSI layout, graph mapping, and combinatorial problems in this scholarly work by Dana Randall from Georgia Institute of Technology. Discover the concept of partitioning an n x n lattice region into n2/a rectangles or areas where cor

0 views • 32 slides


CEPC Main Ring Double Ring Scheme Lattice Design

Lattice design and parameters for the double ring scheme of the Circular Electron Positron Collider (CEPC) main ring discussed at the CEPC AP meeting in January 2016. The outline covers the CEPC parameters for C=100km, including the lattice design and geometry for different regions. Details on energ

0 views • 14 slides


Dynamic Aperture Optimization for CEPC Main Ring

Lattice design and dynamic aperture optimization for the Circular Electron Positron Collider (CEPC) main ring were discussed, focusing on maximizing the dynamic aperture through lattice configurations in the ARC region, interaction region, and partial double ring region. Various strategies such as c

0 views • 14 slides


Introduction to Lattice-Based Cryptography and Linear Equations Solving

Explore the fundamentals of lattice-based cryptography and the significance of solving linear equations in cryptography. Learn about the exponential hardness and quantum resistance of lattice-based crypto, as well as the challenges and techniques involved in solving linear equations with various str

2 views • 29 slides


Exploring Research Design and Funding Priorities in Northern Ireland

Dive into the world of research at the upcoming Application and Research Design Workshop scheduled for Friday, 28th May 2021. Discover the strategic priorities driving impactful research initiatives, learn about current research projects, funding processes, and collaborations. Explore the rich histo

0 views • 37 slides