Gev particles - PowerPoint PPT Presentation


LECTURE 1: Air We Breathe Course Overview

Americans predominantly spend 90% of their time indoors, where each breath taken contains particles sourced from various levels - global, regional, local, and indoor sources. These particles, known as particulate matter (PM), can have differing effects on the body based on their size, with smaller p

2 views • 18 slides


Understanding Radioactive Decay and Nuclear Radiation

Radioactive decay is the process in which unstable atomic nuclei emit charged particles and energy, transforming into different elements. This process involves the emission of alpha particles, beta particles, and gamma rays. Alpha particles consist of two protons and two neutrons, beta particles are

4 views • 31 slides



Exploring Particles and Fundamental Interactions in the Universe

Delve into the intricate world of particles and fundamental interactions in the Universe as explained by Professor Emeritus George Lazarides from Aristotle University of Thessaloniki. Discover the structure of matter, classification of particles based on interactions, constituents of hadrons, conser

1 views • 36 slides


Exploring Dark Sector Particles at Fermilab PIP-II and Beyond

The DAMSA experiment at Fermilab PIP-II aims to search for Dark Sector Particles (DSP) using a high-intensity proton beam facility. By focusing on Axion-like particles and employing specific physics strategies, DAMSA seeks to penetrate the low mass regime and discover rare particles in unexplored ki

6 views • 22 slides


Understanding the States of Matter: Solids, Liquids, and Gases

Matter is anything that occupies space and has mass, consisting of tiny particles like atoms and molecules. Solids have closely packed particles, liquids have less densely packed particles that can flow, and gases have spread out particles. Solids retain their shape, liquids take the shape of their

6 views • 11 slides


New Higgs Bosons and Physics Beyond the Standard Model

Discoveries of new Higgs bosons at the electroweak scale, hints for new scalars at 95 GeV and 151.5 GeV, investigations into the nature of the 151.5 GeV Higgs as a triplet, and analyses of top-quark distributions at the LHC hint at exciting possibilities for physics beyond the Standard Model. ATLAS

0 views • 21 slides


Heisenberg's Uncertainty Principle in Elementary Quantum Mechanics

Heisenberg's Uncertainty Principle, proposed by German scientist Werner Heisenberg in 1927, states the impossibility of simultaneously and accurately determining the position and momentum of microscopic particles like electrons. This principle challenges classical concepts of definite position and m

0 views • 49 slides


Chemistry Regents June 2022 - Subatomic Particles and Atomic Experiments

Understanding subatomic particles, atomic experiments, and spectroscopy concepts in chemistry for the June 2022 Regents exam. Learn about particle charges, gold foil experiment conclusions, and bright-line spectrum elements.

0 views • 167 slides


Understanding Radioactivity and its Particles in Radiochemistry

Radioactivity involves the spontaneous decay of unstable atomic nuclei, releasing radiation in the form of alpha particles, beta particles, and gamma rays. Alpha particles are heavy and have low penetration, beta particles are light and faster, while gamma rays are high-energy waves with great penet

0 views • 20 slides


Realistic Particle Representations and Interactions in Emission & Regeneration UFT

The presentation explores a model in which particles are depicted as focal points in space, proposed by Osvaldo Domann. It delves into theoretical particle representations, motivation for a new approach, and the methodology behind the Postulated model. Additionally, it delves into particle represent

1 views • 24 slides


Understanding Precipitation in Pharmacy and Chemistry

Precipitation is a crucial process in chemistry and pharmacy, where solid particles are separated from a clear liquid solution. This method is used for various purposes like obtaining fine particles, purifying powders, and preparing pharmaceutical substances. Examples include calcium carbonate, ammo

7 views • 10 slides


Understanding Dynamics: Rectilinear Kinematics in Continuous Motion

Dive into the study of dynamics by exploring the kinematics of particles moving along straight paths. Learn about position, displacement, velocity, and acceleration along with key concepts and formulas. Understand the significance of considering objects as particles and focus on the motion character

0 views • 10 slides


Understanding Mole Calculations in Chemistry

Explore various mole calculations in chemistry such as determining mass from moles, moles from mass, and comparing particles in different substances. Learn how to calculate the mass of substances, the number of particles, and perform calculations using balanced equations. Dive into concepts like mol

0 views • 49 slides


Understanding Atomic Structure and Subatomic Particles

Delve into the world of atomic structure and subatomic particles to reveal the inner workings of elements. Discover how to determine atomic mass, identify protons, neutrons, and electrons, and interpret the periodic table. Explore the key concepts of isotopes, electron configurations, and the charac

0 views • 6 slides


Exploring the Nature of Subatomic Particles and Light

Explore the intricate world of subatomic particles such as electrons, protons, and neutrons, and delve into the dual nature of light as both particles and waves. Discover the structure of atoms, their isotopes, atomic number, mass number, and the fundamental discoveries in the field of physics, incl

0 views • 16 slides


Quantum Mechanics of Hydrogen Molecule Rotations

Dive into the intriguing world of molecular rotations in hydrogen molecules, exploring topics such as rotational heat capacity, moment of inertia, nuclear spin isomers, and wave number calculations. Understand the implications of particle interactions, distinguishable vs. indistinguishable particles

0 views • 23 slides


Exploring Parts of the Atom: A Visual Journey

Delve into the discovery of the constituents of an atom, from the negatively charged particles in the electron cloud to the positively charged particles in the nucleus. Learn about protons, neutrons, and the particle with no charge as they form the building blocks of matter. Engage with visually sti

4 views • 17 slides


Understanding Sedimentation Aided with Coagulation and Flocculation

Sedimentation aided with coagulation and flocculation is a chemical and physical process used in water treatment to efficiently remove impurities and particles. Coagulation involves adding chemicals to neutralize particles, while flocculation helps in forming larger clumps for easier removal. The en

0 views • 54 slides


Understanding the Mole and Avogadro's Law at Standard Temperature and Pressure (STP)

The lesson delves into the concepts of mole and Avogadro's law in relation to gases at standard temperature and pressure (STP). It explains how chemists track the number of gas particles using the mole unit, and highlights the significance of STP in gas calculations. Equal volumes of gases contain e

0 views • 9 slides


Understanding Radioactivity and Nuclear Radiation

Radioactivity is the process in which unstable nuclei emit radiation, such as alpha, beta, or gamma particles, to become stable. This emission can change the element's identity and is crucial in fields like nuclear power and understanding Earth's core heat source. Different radioactive isotopes like

0 views • 12 slides


Understanding Boyle's Law in Physics

Boyle's Law explains the relationship between the volume and pressure of a gas. When pressure increases on a fixed mass of gas at constant temperature, the volume decreases. This inverse proportion between pressure and volume can be explained by the Kinetic Theory, where the speed of gas particles a

0 views • 12 slides


Exploring Wave-Particle Duality in Electron Diffraction Experiment

Delve into the fascinating world of wave-particle duality through an electron diffraction experiment that reveals the dual nature of particles and waves. By investigating the wave characteristics of electrons and measuring their De Broglie wavelength, this experiment sheds light on the fundamental p

1 views • 12 slides


Unified Field Theory of Fundamental Particles by Osvaldo Domann

Methodology, characteristics, and interactions of Fundamental Particles (FPs) in the Unified Field Theory proposed by Osvaldo Domann are explored. The theory covers the unified field for all forces, quantum laws, momentum quantification, and more. It introduces the concept of Fundamental Particles m

0 views • 21 slides


New Measurements of the EMC Effect at 12 GeV - Frontiers and Careers Workshop

In this workshop, new measurements of the EMC Effect at 12 GeV were discussed, shedding light on one of the biggest unsolved mysteries in nuclear physics. The discovery, prediction, and quantification of the EMC Effect were explored, raising questions about modifications in nucleon structure within

2 views • 30 slides


Exploring the Dual Nature of Particles and Waves in Physics

This collection of images and information delves into the intriguing concept of the dual nature of particles and waves in the field of physics. From the historic Young's double-slit experiment demonstrating the wave nature of light to Louis de Broglie's groundbreaking work assigning a wavelength to

2 views • 15 slides


Light Optical Aerosol Counter (LOAC) Project Overview

Light Optical Aerosol Counter (LOAC) is a project led by Jean-Baptiste Renard in France, involving a collaboration between research institutions, private companies, and the French Space Agency. The LOAC instrument, weighing 1 kg, is used with meteorological balloons to measure concentrations of aero

0 views • 21 slides


Understanding the Location of Gamma-Ray Emission Zones in Blazars

This research explores the determination of the GeV emitting zone in fast, bright blazars through studies conducted during the AAS Meeting in January 2014. The focus is on locating the gamma-ray emission zone within blazars and investigating the critical differences between various energy scales lik

0 views • 23 slides


Understanding Ionizing Radiation and Its Interactions with Matter

Ionizing radiation interacts with matter in direct and indirect ways, leading to various effects on biological systems. Directly ionizing particles disrupt atomic structures, while indirectly ionizing radiation like electromagnetic waves produce secondary electrons. Alpha particles have high ionizat

0 views • 22 slides


Update on Polarimeter Meeting with M. Sullivan

Presenting a recap of issues regarding the 18 GeV and 10 GeV polarimeter regions, including details on photon windows, power densities, mask suggestions for absorbing radiation, and engineering considerations. The content also discusses the SR power from bend magnets and water cooling requirements f

0 views • 26 slides


Designing a Novel Low-Energy Beamline for NA61/SHINE at CERN

Carlo A. Mussolini from the University of Oxford, working at CERN, is designing a new low-energy beamline for NA61/SHINE experiment. The need for a low-energy beamline arises from the lack of particle production data in the 1-13 GeV/c momentum range. Current beam facilities at CERN face challenges w

0 views • 24 slides


Exploring Strong Interaction Physics with 22 GeV Electrons at JLab

Investigate the nucleon and nuclei structure through inclusive electron scattering at 22 GeV, delving into formalisms and structure functions. Discussions on the Electron Ion Collider, nuclear PDFs, world data comparisons, and definitive proof of three-nucleon short-range correlations at Jefferson L

0 views • 21 slides


Understanding Dynamics of Connected Particles in Physics

Delve into the world of connected particles in physics with a focus on tow bars, forces, and Newton's laws. Explore problems involving connected particles moving in the same direction and analyze scenarios like towing cars along a road. Gain insights into tension, accelerations, resistances, and for

0 views • 14 slides


Preliminary E-TCT Test Results and Analysis from VP37411 Batch Irradiated with 24 GeV Protons

E-TCT tests were conducted on samples from batch VP37411 irradiated with 24 GeV protons in IRRAD I, Mandi. The tests involved measurements with the laser beam along the strip direction, revealing differences in charge collection between left and right sides. Various images and profiles illustrate th

0 views • 8 slides


Understanding Radiation and Its Effects on Health

Radiation is a form of energy that can be emitted from radioactive materials in the form of particles or waves. It can be either ionizing or non-ionizing, with ionizing radiation having the ability to penetrate tissues and deposit energy within them. While alpha particles, beta particles, x-rays, an

1 views • 38 slides


Understanding Magnetism: Forces, Fields, and Applications

Explore the fascinating realm of magnetism in Physics as you delve into topics such as forces on charged particles, path of particles in magnetic fields, torque on current loops, and Earth's magnetic field alignment. Learn about the force on straight wires and electric charges in magnetic fields, an

0 views • 14 slides


Understanding the Impact of Ultra-High Energy Particles on Biological Systems

Ultra-high energy particles from outer space create Extended Air Showers (EAS) when interacting with Earth's atmosphere, leading to the formation of dense cores emitting radiation. These particles can affect biological organisms, memory storage, and health risks, with implications for medical resear

0 views • 5 slides


Exploring Elementary Particles and Their Interactions in Nuclear and Particle Physics

Delve into the fascinating world of elementary particles, where quarks form the basis of protons and neutrons in the nucleus, alongside electrons. Discover a diverse array of particles such as muons, neutrinos, and quarks, each with unique properties of charge and mass. Uncover the significance of t

0 views • 10 slides


Understanding Moles in Chemistry

Matter is composed of various particles, and chemists use the concept of moles as a unit of measure to quantify the number of particles in a substance. One mole is equal to 6.02 x 10^23 representative particles of a substance, known as Avogadro's number. Moles are versatile and applicable to differe

0 views • 25 slides


Understanding Kappa Particles Transmission in Paramecium

Research by Dr. Shashikant R. Sitre delves into the transmission of kappa particles in Paramecium, revealing the presence of these cytoplasmic particles in specific strains. The interaction between killer and sensitive strains, controlled by the dominant K gene, sheds light on cytoplasmic heredity a

0 views • 10 slides


Relativistic Treatment of Spin Particles: Dirac Equation & Special Relativity

Exploring the Dirac equation for spin particles within the framework of special theory of relativity. Topics covered include energy-momentum relationships, basics of special relativity, Lorentz transformations, and relativistic effects on particles. The lecture delves into the interplay between quan

0 views • 23 slides