Understanding Recursive and Iterative Factorials through Tracing

Slide Note
Embed
Share

This content provides an in-depth exploration of recursive and iterative factorial functions through tracing examples. The explanations are accompanied by visual aids to help conceptualize the iterative and recursive processes of calculating factorials. By comparing the two methods side by side, readers can grasp the differences and similarities between iterative and recursive approaches to factorial calculations.


Uploaded on Sep 20, 2024 | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. Download presentation by click this link. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

E N D

Presentation Transcript


  1. Recursive Tracing

  2. Iterative Factorial public static int iterativeFactorial(int n) { int result = 1; for (int i = 2; i <= n; i++) { result *= i; } return result; } result = 1 ( * 2) = 2 ( * 3) = 6 ( * 4) = 24 i = 2 3 4

  3. Recursive Factorial 4 public static int recursiveFactorial(int n) { if (n == 1) { return 1; } else { return n * recursiveFactorial(n 1); } } } } } } } } 3 public static int recursiveFactorial(int n) { if (n == 1) { return 1; } else { return n * recursiveFactorial(n 1); 3 } else { return n * recursiveFactorial(n 1); 2 } else { return n * recursiveFactorial(n 1); 2 public static int recursiveFactorial(int n) { if (n == 1) { return 1; if (n == 1) { return 1; 1 4 4-1 public static int recursiveFactorial(int n) { 3 - 1 2-1

  4. Recursive Factorial 4 public static int recursiveFactorial(int n) { if (n == 1) { return 1; } else { return n * recursiveFactorial(n 1); } } } } } } } } 3 public static int recursiveFactorial(int n) { if (n == 1) { return 1; } else { return n * recursiveFactorial(n 1); 3 } else { return n * recursiveFactorial(n 1); 2 } else { return n * recursiveFactorial(n 1); 2 public static int recursiveFactorial(int n) { if (n == 1) { return 1; if (n == 1) { return 1; 1 4 4-1 public static int recursiveFactorial(int n) { 3 - 1 2-1 Base Case!

  5. Recursive Factorial 4 public static int recursiveFactorial(int n) { if (n == 1) { return 1; } else { return n * recursiveFactorial(n 1); } } } } } } } } 3 public static int recursiveFactorial(int n) { if (n == 1) { return 1; } else { return n * recursiveFactorial(n 1); 3 } else { return n * recursiveFactorial(n 1); 2 return n * recursiveFactorial(n 1); 2 public static int recursiveFactorial(int n) { if (n == 1) { return 1; if (n == 1) { return 1; } else { = 24 1 public static int recursiveFactorial(int n) { 4 6 2 1

More Related Content