Understanding Fluid Flow and Measurement Devices
The concept of rotational and irrotational flow adjacent to a straight boundary, along with the dynamics of fluid flows and laws governing fluid flow like the continuity equation and energy equation, are discussed. Insights into devices for flow measurement such as venturimeter, pitot tube, orifices, notches, and weirs are provided, emphasizing their significance in measuring fluid flow. Additionally, aspects of pipe flow, particularly steady and turbulent flow, are explored.
Uploaded on Dec 16, 2024 | 0 Views
Download Presentation
Please find below an Image/Link to download the presentation.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. Download presentation by click this link. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.
E N D
Presentation Transcript
Rotational and Irrotational Flow Are applicable to flow adjacent to a straight boundary. Flow is rotational if each fluid particle has an angular velocity about its own mass centre Flow is Irrotational if the velocity is inversely proportional to the radius, r. The two axes rotate in opposite directions
Dynamics of Fluid flows and laws of fluid flow Continuity Equation: A1V1= A2V2 Energy Equation: Most powerful tool used to analyze fluid flow problems. Flow assumed to be steady and fluid frictionless and incompressible. Momentum Equation:
Devices for flow Measurement Venturimeter- Device for measuring discharge of a pipe. Constriction in pipes cross section which causes an increase in velocity at the throat. Pitot tube- device for measuring the velocity of flow of a fluid usually when a free water surface exists. Orifices-used to measure flows Q=AV Notches and Weirs- Obstructions to flow intended to cause the fluid to backup behind the weir or notch and flow through it in a regular fashion. Triangular Notch and V-Notch: Used when it is required that the coefficient of discharge should remain constant over a wide range of head.
Pipe Flow Steady turbulent