Nucleon Tomography and Proton Charge Radius Exploration

 
Nucleon tomography
 
GDR QCD, 29/09/2016
 
Michel Guidal (IPN Orsay)
 
(from data to GPDs and proton charge radius)
 
JLab
JLab
Hall A
Hall A
 
JLab
JLab
CLAS
CLAS
 
HERMES
HERMES
 
                
                
DVCS
DVCS
                  BSA
                  BSA
 
                 
                 
DVCS
DVCS
                  lTSA
                  lTSA
 
                               
                               
DVCS
DVCS
                  BSA,lTSA,tTSA,BCA
                  BSA,lTSA,tTSA,BCA
 
DVCS unpol. and
DVCS unpol. and
B-pol. X-sections
B-pol. X-sections
 
         
         
DVCS
DVCS
unpol. X-section
unpol. X-section
 
         
         
DVCS
DVCS
B-pol. X-section
B-pol. X-section
 
H
q
(
x
,
,
t
) 
but only 

and
 
t
 
experimentally accessible
 
In general, 
8
 
GPD quantities accessible
         (sub-)Compton Form Factors
 
 with
 
   Given the well-established 
LT-LO
 DVCS+BH amplitude
DVCS
Bethe-Heitler
G
P
D
s
 
 
Can one recover the 
8
 
CFFs
 from the DVCS observables?
 
 
Two (quasi-) model-independent approaches
     to extract, at fixed 
x
B
, 
t
 and 
Q
2
 
(« local » fitting)
,
 
     the CFFs from the DVCS observables

UL
 ~ 
sin
Im{F
1
H
+
(F
1
+F
2
)(
H
 
+ x
B
/2
E
) –
kF
2
 
E
+…
}d
 
~
 
~

LU
 ~ 
sin
 
Im{F
1
H
 
+ 
(F
1
+F
2
)
H
 
-kF
2
E
}d
 
~
1/ Mapping and linearization
 
If enough observables measured, one has a system
of 8 equations with 8 unknowns
Given reasonable approximations 
(leading-twist dominance,
neglect of some 1/Q
2
 terms,...)
, the system can be linear
(practical for the error propagation)
 
K
.
 
K
u
m
e
r
i
c
k
i
,
 
D
.
 
M
u
e
l
l
e
r
,
 
M
.
 
M
u
r
r
a
y
 
P
h
y
s
.
P
a
r
t
.
N
u
c
l
.
 
4
5
 
(
2
0
1
4
)
 
4
,
 
7
2
3
2/ «Brute force » fitting 
 
 
2
 
 minimization (with 
MINUIT + MINOS
) of  the
available DVCS observables at a given 
x
B
, 
t
 
and
 
Q
2
 
point
by varying the CFFs within a limited hyper-space
 
(e.g. 5xVGG)
 
However, as some observables are largely dominated by
a single or a few CFFs, there is a convergence (i.e. a well-defined
minimum
 
2
) for these latter CFFs.
 
The contribution of the non-converging CFF enters in
the error bar of the converging ones. For instance (naive):
Examples of correlation between 
H
Im
 and 
H
Im
~
 
 
2/ «Brute force » fitting
 
 
2
 
 minimization (with 
MINUIT + MINOS
) of  the
available DVCS observables at a given 
x
B
, 
t
 
and
 
Q
2
 
point
by varying the CFFs within a limited hyper-space 
(e.g. 5xVGG)
 
 
However, as some observables are largely dominated by
a single or a few CFFs, there is a convergence (i.e. a well-defined
minimum 
2
) for these latter CFFs.
 
 
The contribution of the non-converging CFF enters in
the error bar of the converging ones.
 
unpol.sec.eff.
+
beam pol.sec.eff.
 
2
 
minimization
 
unpol.sec.eff.
+
beam pol.sec.eff.
 
2
 
minimization
 
beam spin asym.
+
long. pol. tar. asym
 
unpol.sec.eff.
+
beam pol.sec.eff.
 
2
 
minimization
 
beam spin asym.
+
long. pol. tar. asym
 
beam charge asym.
+
beam spin asym
+
 
linearization
 
R
e
p
t
.
P
r
o
g
.
P
h
y
s
.
 
7
6
 
(
2
0
1
3
)
0
6
6
2
0
2
 
M
.
G
.
,
 
H
.
 
M
o
u
t
a
r
d
e
,
M
.
 
V
a
n
d
e
r
h
a
e
g
h
e
n
 
C
L
A
S
 
c
o
l
l
.
P
R
L
 
1
1
5
 
(
2
0
1
5
)
,
 
2
1
2
0
0
3
 
H
a
l
l
 
A
 
c
o
l
l
.
P
R
C
9
2
 
(
2
0
1
5
)
,
 
0
5
5
2
0
2
 
C
L
A
S
 
c
o
l
l
.
P
R
L
 
1
1
4
 
(
2
0
1
5
)
,
 
0
3
2
0
0
1
 
C
L
A
S
 
c
o
l
l
.
P
R
D
9
1
 
(
2
0
1
5
)
,
 
0
5
2
0
1
4
 
N
e
w
 
r
e
c
e
n
t
 
d
a
t
a
 
f
r
o
m
 
J
L
a
b
:
 
(
u
n
p
o
l
.
 
a
n
d
 
b
e
a
m
-
p
o
l
.
 
 
 
 
 
 
 
 
 
 
x
-
s
e
c
t
i
o
n
s
)
 
(
l
T
S
A
)
 
(
l
T
S
A
)
 
(
u
n
p
o
l
.
 
a
n
d
 
b
e
a
m
-
p
o
l
.
 
 
 
 
 
 
 
 
 
x
-
s
e
c
t
i
o
n
s
)
 
C
L
A
S
 
c
o
l
l
.
 
P
R
L
 
1
1
5
 
(
2
0
1
5
)
,
 
2
1
2
0
0
3
 
R
.
 
D
u
p
r
é
,
 
M
.
G
.
,
M
.
 
V
a
n
d
e
r
h
a
e
g
h
e
n
 
a
r
X
i
v
:
1
6
0
6
.
0
7
8
2
1
[
h
e
p
-
p
h
]
 
CLAS 
 & 

 
CLAS 
, 

lTSA & DSA
 
Hall A 
 & 

 
R
.
 
D
u
p
r
é
,
 
M
.
G
.
,
M
.
 
V
a
n
d
e
r
h
a
e
g
h
e
n
 
a
r
X
i
v
:
1
6
0
6
.
0
7
8
2
1
[
h
e
p
-
p
h
]
 
CLAS 
 & 

 
CLAS 
, 

lTSA & DSA
 
Hall A 
 & 

 
I
f
(
M
.
 
B
u
r
k
h
a
r
d
t
)
 
H
o
w
e
v
e
r
,
 
t
h
i
s
 
f
o
r
m
u
l
a
 
i
n
v
o
l
v
e
s
:
 
W
h
i
l
e
 
w
e
 
e
x
t
r
a
c
t
:
 
N
e
e
d
 
t
o
 
e
s
t
i
m
a
t
e
:
 
(
a
s
s
u
m
i
n
g
 
)
f
o
r
 
«
 
I
n
t
e
g
r
a
t
e
d
 
»
 
r
a
d
i
u
s
 
f
r
o
m
 
e
l
a
s
t
i
c
 
f
o
r
m
 
f
a
c
t
o
r
 
F
1
 
u
s
i
n
g
:
 
r
e
c
e
n
t
 
C
O
M
P
A
S
S
 
m
e
a
s
u
r
e
m
e
n
t
 
(
I
W
H
S
S
2
0
1
6
)
 
The 
axial
 charge 
(H
im
) 
appears to be more « concentrated » than
the 
electromagnetic
 charge 
(H
im
)
 
~
 
C
o
n
f
i
r
m
e
d
 
b
y
 
n
e
w
 
C
L
A
S
 
A
_
U
L
 
a
n
d
 
A
_
L
L
 
d
a
t
a
:
 
P
h
y
s
.
R
e
v
.
 
D
9
1
 
(
2
0
1
5
)
 
5
,
 
0
5
2
0
1
4
The Bethe-Heitler process
 
M
.
 
B
o
e
r
,
 
M
G
 
J
.
P
h
y
s
.
 
G
4
2
 
(
2
0
1
5
)
 
3
,
 
0
3
4
0
2
3
 
M
.
 
B
o
e
r
,
 
M
G
 
J
.
P
h
y
s
.
 
G
4
2
 
(
2
0
1
5
)
 
3
,
 
0
3
4
0
2
3
 
M
.
 
B
o
e
r
,
 
M
G
 
J
.
P
h
y
s
.
 
G
4
2
 
(
2
0
1
5
)
 
3
,
 
0
3
4
0
2
3
 
M
.
 
B
o
e
r
,
 
M
G
 
J
.
P
h
y
s
.
 
G
4
2
 
(
2
0
1
5
)
 
3
,
 
0
3
4
0
2
3
Slide Note
Embed
Share

"Exploring the concept of nucleon tomography to understand proton charge radius and Generalized Parton Distributions (GPDs) in theoretical and experimental physics. Discussions on extracting Compton Form Factors (CFFs) from Deeply Virtual Compton Scattering (DVCS) observables using advanced methodologies. Insights into mapping, linearization, and brute force fitting techniques. Examples of correlation analysis between specific parameters. A comprehensive study on recovering GPD quantities from DVCS measurements."

  • Nucleon Tomography
  • Proton Charge Radius
  • GPDs
  • CFFs
  • DVCS

Uploaded on Feb 15, 2025 | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.

E N D

Presentation Transcript


  1. GDR QCD, 29/09/2016 Nucleon tomography (from data to GPDs and proton charge radius) Michel Guidal (IPN Orsay)

  2. JLab Hall A DVCS DVCS B-pol. X-section unpol. X-section JLab CLAS DVCS BSA DVCS lTSA DVCS unpol. and B-pol. X-sections HERMES DVCS BSA,lTSA,tTSA,BCA

  3. + + 1 1 ( , , ) ( x , , ) H x t H x t + + TDVCS ~ ~ ( , , ) dx P dx i H t + x i 1 1 Hq(x, ,t) but only and t experimentally accessible

  4. In general, 8 GPD quantities accessible (sub-)Compton Form Factors with

  5. Given the well-established LT-LO DVCS+BH amplitude DVCS Bethe-Heitler GPDs Can one recover the 8 CFFs from the DVCS observables? Obs= Amp(DVCS+BH) CFFs Two (quasi-) model-independent approaches to extract, at fixed xB, t and Q2( local fitting), the CFFs from the DVCS observables

  6. 1/ Mapping and linearization If enough observables measured, one has a system of 8 equations with 8 unknowns Given reasonable approximations (leading-twist dominance, neglect of some 1/Q2terms,...), the system can be linear (practical for the error propagation) ~ LU ~ sin Im{F1H + (F1+F2)H -kF2E}d UL ~ sin Im{F1H+ (F1+F2)(H + xB/2E) kF2E+ }d ~ ~ K. Kumericki, D. Mueller, M. Murray Phys.Part.Nucl. 45 (2014) 4, 723

  7. 2/ Brute force fitting 2minimization (with MINUIT + MINOS) of the available DVCS observables at a given xB, t and Q2point by varying the CFFs within a limited hyper-space (e.g. 5xVGG) The problem can be (largely) underconstrained: JLab Hall A: pol. and unpol. X-sections JLab CLAS: BSA + TSA 2 constraints and 8 parameters ! However, as some observables are largely dominated by a single or a few CFFs, there is a convergence (i.e. a well-defined minimum 2) for these latter CFFs. The contribution of the non-converging CFF enters in the error bar of the converging ones. For instance (naive): If -10<x<10:

  8. ~ Examples of correlation between HImand HIm Polarized beam, unpolarized target (BSA) : ~ LU ~ sin Im{F1H + (F1+F2)H -kF2E}d

  9. 2/ Brute force fitting 2minimization (with MINUIT + MINOS) of the available DVCS observables at a given xB, t and Q2point by varying the CFFs within a limited hyper-space (e.g. 5xVGG) The problem can be (largely) underconstrained: JLab Hall A: pol. and unpol. X-sections JLab CLAS: BSA + TSA 2 constraints and 8 parameters ! However, as some observables are largely dominated by a single or a few CFFs, there is a convergence (i.e. a well-defined minimum 2) for these latter CFFs. The contribution of the non-converging CFF enters in the error bar of the converging ones. M.G. EPJA 37 (2008) 319 M.G. PLB 689 (2010) 156 M.G. PLB 693 (2010) 17 M.G. & H. Moutarde EPJA 42 (2009) 71 M.G. & M. Boer J.Phys.G 42 (2015) 034023

  10. unpol.sec.eff. + beam pol.sec.eff. 2minimization

  11. unpol.sec.eff. beam spin asym. + + beam pol.sec.eff. long. pol. tar. asym 2minimization

  12. unpol.sec.eff. beam spin asym. beam charge asym. + + + beam pol.sec.eff. long. pol. tar. asym beam spin asym + 2minimization linearization

  13. M.G., H. Moutarde, M. Vanderhaeghen Rept.Prog.Phys. 76 (2013) 066202

  14. New recent data from JLab: CLAS coll. PRL 115 (2015), 212003 (unpol. and beam-pol. x-sections) Hall A coll. CLAS coll. CLAS coll. PRC92 (2015), 055202 (unpol. and beam-pol. x-sections) PRL 114 (2015), 032001 PRD91 (2015), 052014 (lTSA) (lTSA)

  15. CLAS coll. PRL 115 (2015), 212003

  16. R. Dupr, M.G., M. Vanderhaeghen arXiv:1606.07821 [hep-ph] CLAS & CLAS , lTSA & DSA Hall A &

  17. R. Dupr, M.G., M. Vanderhaeghen arXiv:1606.07821 [hep-ph] CLAS & CLAS , lTSA & DSA Hall A &

  18. (M. Burkhardt) If However, this formula involves: While we extract: Need to estimate: (assuming )

  19. for

  20. Integrated radius from elastic form factor F1 using:

  21. recent COMPASS measurement (IWHSS2016)

  22. The axial charge (Him) appears to be more concentrated than the electromagnetic charge (Him) ~

  23. Confirmed by new CLAS A_UL and A_LL data: Phys.Rev. D91 (2015) 5, 052014

  24. We have developped a fitting method to extract CFFs from data in which the influence of the subdominant CFFs end up in the uncertainties of the dominant CFFs First new insights on nucleon structure already emerging from current data: in particular, the rise of the proton radius (and density) as x decreases

  25. The Bethe-Heitler process

  26. M. Boer, MG J.Phys. G42 (2015) 3, 034023

  27. M. Boer, MG J.Phys. G42 (2015) 3, 034023

  28. M. Boer, MG J.Phys. G42 (2015) 3, 034023

  29. M. Boer, MG J.Phys. G42 (2015) 3, 034023

Related


More Related Content

giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#