GIS and Remote Sensing for Overlay Analysis Training Program

 
www.acaciawater.com
 
March 22, 2022
 
GIS and Remote Sensing for
overlay analysis
 
Training Day 1
PM / Input data processing (1/3)
 
Dr. Maarten Waterloo
 
Training program
 
Detailed program – Day 1
 
Overlay analysis - Workflow
 
STEP 0: Data acquisition and basic processing
STEP 1: Pre-processing
> Clip, resample, reproject, classify, calculate
STEP 2: Overlaying
> Classes and scores, weights, average suitability
STEP 3: Sensitivity analysis
 
Part 1
 
Introduction of Overlay Analysis – Step 1
 
Step 1 – Principle
 
Output:
Overlay layers with uniform resolution, extent and CRS:
lithology, land use, recharge, slope, lineaments (x2)
Input:
CRS (WSG84, UTM 37N), resolution (100 m)
Input maps: extent, lithology, DEM, land use, lineaments
(x2), precipitation, evapotranspiration
Look-up tables (lithology and land use classes)
Style definitions
 
Step 1 – Input data
 
Primary data:
Lithology
Recharge
Land use
Slope/Topographic Wetness Index (TWI)
Lineaments
Secondary data:
Evapotranspiration
Vegetation Index
Soil moisture
Hydrology (catchments, drainage network, wetness index)
 
Step 1 – Main geo-algorithms
 
Clipping to cluster extent
Reprojection and resampling (average or mode)
to desired resolution
Calculation (recharge, slope, density, proximity)
Classification (lithology, land use)
 
Geo-algorithms – Clipping
 
Geo-algorithms – Reproject
 
Geo-algorithms – Resample
 
Geo-algorithms – Join
 
+
 
=
 
Shapefile
 
Excel/csv/txt
Infiltration coefficient
 
 
 
 
 
 
Geoalgorithms – Rasterize
 
Geo-algorithms – Calculation
 
Field calculator
Raster calculator
Graphical modeler
 
Geo-algorithms – Reclassify
 
 
Part 2
 
Pre-processing of lithology layer
 
Pre-processing – Lithology layer
 
Source: Harmonized geological map
Classification: from 104 => to 7 classes
 
 
Lithology layer – Procedure
 
1)
Load woreda extent 
(vector)
2)
Load harmonized geological map 
(vector)
3)
Load lithology classes 
(delimited text)
4)
Join table with classes to map using “code” column
> 
Double click on layer name, then go to Joins menu
5)
If joined field is a string (aligned left), then change to
number (aligned right) 
> Field calculator
6)
Reproject map to UTM37N, WGS84 (EPSG:32637) 
> Warp
7)
Rasterize reprojected map using 7 classes, set resolution
to 100m and extent to woreda extent 
> Rasterize
 
Lithology layer – Classification
 
Harmonized geological map
 
7 lithology classes
 
Part 3
 
Pre-processing of land use layer
 
Pre-processing – Land use
 
Source: 2016 Sentinel-2A imagery (20 m)
Reclassification into 5 classes
 
 
 
Land use layer – Procedure
 
1)
Load extent 
(vector)
2)
Load land use data 
(raster)
3)
Reclassify landuse to 5 classes
>
 
r.reclass, using overlay/classes/landuse_esa.txt
4)
Reproject and resample landuse to UTM37N, WGS84
with resolution 100m and clip to extent (think about
resampling method to use)
> Warp (Hint: use ‘Mode’ for resampling methods)
 
Land use layer – Reclassification
 
Land use ESA (20 m)
 
Reclassified land use (100 m)
 
February 26, 2019
 
Thank you for your attention
 
van Hogendorpplein 4, 2805 BM Gouda, the Netherlands
telephone: +31 (0)182 - 686 424
info@acaciawater.com   |   www.acaciawater.com
Slide Note
Embed
Share

This training program focuses on GIS and remote sensing techniques for overlay analysis, covering topics such as data processing, suitability mapping, sensitivity analysis, and introduction to Python. The program includes practical sessions on QGIS, lithology, land use, recharge, TWI, and more. Participants will learn about data acquisition, pre-processing, overlaying, sensitivity analysis, and advanced geo-algorithms.

  • GIS
  • Remote Sensing
  • Overlay Analysis
  • Training Program
  • QGIS

Uploaded on Aug 25, 2024 | 2 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. Download presentation by click this link. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

E N D

Presentation Transcript


  1. GIS and Remote Sensing for overlay analysis March 22, 2022 Training Day 1 PM / Input data processing (1/3) Dr. Maarten Waterloo www.acaciawater.com

  2. Training program Day Program of activities (AM/PM) Day 1 Introduction to overlay analysis & QGIS / Input data processing (lithology, land use) Tue., March 22nd Day 2 Input data processing (recharge, TWI) / Input data processing (lineament proximity & density) Wed., March 23rd Day 3 Suitability map generation / Automation of suitability mapping Thu., March 24th Day 4 Suitability map styling / Introduction to Google Earth Engine Fri., March 25th Day 5 Introduction to Python Sat., March 26th

  3. Detailed program Day 1 Time Activities 9:00 12:00 Introduction to GIS Introduction to overlay analysis Introduction to QGIS 12:00 13:00 LUNCH BREAK 13:00 16:00 Overlay analysis Step 1 Input layer Lithology Input layer Land use

  4. Overlay analysis - Workflow STEP 0: Data acquisition and basic processing STEP 1: Pre-processing > Clip, resample, reproject, classify, calculate STEP 2: Overlaying > Classes and scores, weights, average suitability STEP 3: Sensitivity analysis

  5. Part 1 Introduction of Overlay Analysis Step 1

  6. Step 1 Principle Output: Overlay layers with uniform resolution, extent and CRS: lithology, land use, recharge, slope, lineaments (x2) Input: CRS (WSG84, UTM 37N), resolution (100 m) Input maps: extent, lithology, DEM, land use, lineaments (x2), precipitation, evapotranspiration Look-up tables (lithology and land use classes) Style definitions

  7. Step 1 Input data Primary data: Lithology Recharge Land use Slope/Topographic Wetness Index (TWI) Lineaments Secondary data: Evapotranspiration Vegetation Index Soil moisture Hydrology (catchments, drainage network, wetness index)

  8. Step 1 Main geo-algorithms Clipping to cluster extent Reprojection and resampling (average or mode) to desired resolution Calculation (recharge, slope, density, proximity) Classification (lithology, land use)

  9. Geo-algorithms Clipping

  10. Geo-algorithms Reproject

  11. Geo-algorithms Resample

  12. Geo-algorithms Join Shapefile Infiltration coefficient Excel/csv/txt + =

  13. Geoalgorithms Rasterize

  14. Geo-algorithms Calculation Field calculator Raster calculator Graphical modeler

  15. Geo-algorithms Reclassify

  16. Part 2 Pre-processing of lithology layer

  17. Pre-processing Lithology layer Source: Harmonized geological map Classification: from 104 => to 7 classes Class Description 1 Loose quaternary sediments, including elluvials and Miocene sediments 2 Rift pyroclastics and rift silicics 3 Upper basalts + Quaternary highland basalts + Rift basalts 4 Lower basalts 5 Limestone + Upper sandstone + Shale + Marl + all other Mesozoics 6 Low grade basement and Adigrate sandstone 7 High grade basement

  18. Lithology layer Procedure 1) Load woreda extent (vector) 2) Load harmonized geological map (vector) 3) Load lithology classes (delimited text) 4) Join table with classes to map using code column > Double click on layer name, then go to Joins menu 5) If joined field is a string (aligned left), then change to number (aligned right) > Field calculator 6) Reproject map to UTM37N, WGS84 (EPSG:32637) > Warp 7) Rasterize reprojected map using 7 classes, set resolution to 100m and extent to woreda extent > Rasterize

  19. Lithology layer Classification Harmonized geological map 7 lithology classes

  20. Part 3 Pre-processing of land use layer

  21. Pre-processing Land use Source: 2016 Sentinel-2A imagery (20 m) Reclassification into 5 classes Class Description 1 Cropland 2 Bush and rangeland 3 Forest 4 Bare soil and degraded land 5 Urban area

  22. Land use layer Procedure 1) Load extent (vector) 2) Load land use data (raster) 3) Reclassify landuse to 5 classes > r.reclass, using overlay/classes/landuse_esa.txt 4) Reproject and resample landuse to UTM37N, WGS84 with resolution 100m and clip to extent (think about resampling method to use) > Warp (Hint: use Mode for resampling methods)

  23. Land use layer Reclassification Reclassified land use (100 m) Land use ESA (20 m)

  24. Thank you for your attention February 26, 2019 van Hogendorpplein 4, 2805 BM Gouda, the Netherlands telephone: +31 (0)182 - 686 424 info@acaciawater.com | www.acaciawater.com

Related


More Related Content

giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#