Data Assimilation in Thermoacoustic Instability with Lagrangian Optimization

D
a
t
a
 
a
s
s
i
m
i
l
a
t
i
o
n
 
i
n
 
t
h
e
r
m
o
a
c
o
u
s
t
i
c
i
n
s
t
a
b
i
l
i
t
y
 
w
i
t
h
 
L
a
g
r
a
n
g
i
a
n
o
p
t
i
m
i
z
a
t
i
o
n
12
th
 European Fluid Mechanics Conference, Vienna, 2018
S
t
r
u
c
t
u
r
e
 
o
f
 
t
h
e
 
t
a
l
k
1.
Thermoacoustics: Motivation and background
2.
A low-order thermoacoustic model
3.
H
o
w
 
t
o
 
m
a
k
e
 
a
 
q
u
a
l
i
t
a
t
i
v
e
 
m
o
d
e
l
 
q
u
a
n
t
i
t
a
t
i
v
e
l
y
 
a
c
c
u
r
a
t
e
Data assimilation with Lagrangian optimization
Transient dynamics vs dynamics at regime
Data assimilation at regime
Data assimilation during transient dynamics
A more effective cost functional
4.
Conclusions
2
T
h
e
r
m
o
a
c
o
u
s
t
i
c
 
o
s
c
i
l
l
a
t
i
o
n
s
 
a
r
e
 
o
n
e
 
o
f
 
t
h
e
 
b
i
g
g
e
s
t
c
h
a
l
l
e
n
g
e
s
 
f
a
c
e
d
 
b
y
 
g
a
s
-
t
u
r
b
i
n
e
 
m
a
n
u
f
a
c
t
u
r
e
r
s
T
h
e
r
m
o
a
c
o
u
s
t
i
c
 
i
n
s
t
a
b
i
l
i
t
i
e
s
3
Uncontrolled oscillations can be
detrimental, if not catastrophic
Thermoacoustic oscillations are
a multi-physical phenomenon,
which is difficult to predict
Lieuwen & Yang, 2005
Poinsot, PROCI, 2017
A
 
l
o
w
-
o
r
d
e
r
,
 
n
o
n
l
i
n
e
a
r
 
t
h
e
r
m
o
a
c
o
u
s
t
i
c
 
m
o
d
e
l
 
c
a
p
t
u
r
e
s
t
h
e
 
t
i
m
e
-
d
e
l
a
y
e
d
 
p
h
y
s
i
c
s
,
 
w
h
i
c
h
 
i
s
 
t
h
e
 
k
e
y
 
p
h
y
s
i
c
a
l
m
e
c
h
a
n
i
s
m
 
o
f
 
t
h
e
r
m
o
a
c
o
u
s
t
i
c
 
i
n
s
t
a
b
i
l
i
t
i
e
s
Longitudinal acoustics
Uniform  mean flow
Zero Mach number
Ideal boundary
conditions
M
o
m
e
n
t
u
m
 
e
q
u
a
t
i
o
n
E
n
e
r
g
y
 
e
q
u
a
t
i
o
n
4
E
x
p
a
n
s
i
o
n
 
i
n
 
n
a
t
u
r
a
l
 
a
c
o
u
s
t
i
c
 
m
o
d
e
s
D
i
s
c
r
e
t
i
z
e
d
 
g
o
v
e
r
n
i
n
g
 
e
q
u
a
t
i
o
n
s
T
h
e
 
t
h
e
r
m
o
a
c
o
u
s
t
i
c
 
m
o
d
e
l
 
i
s
 
d
i
s
c
r
e
t
i
z
e
d
 
w
i
t
h
 
t
h
e
 
n
a
t
u
r
a
l
a
c
o
u
s
t
i
c
 
m
o
d
e
s
5
6
H
o
w
 
t
o
 
m
a
k
e
 
a
 
q
u
a
l
i
t
a
t
i
v
e
 
m
o
d
e
l
q
u
a
n
t
i
t
a
t
i
v
e
l
y
 
a
c
c
u
r
a
t
e
?
F
i
r
s
t
,
 
w
e
 
a
u
g
m
e
n
t
 
t
h
e
 
s
y
s
t
e
m
 
t
o
 
c
a
l
i
b
r
a
t
e
 
o
n
 
t
h
e
 
f
l
y
 
t
h
e
f
l
a
m
e
 
p
a
r
a
m
e
t
e
r
s
Parameters are regarded as constant variables
7
S
e
c
o
n
d
,
 
w
e
 
o
p
t
i
m
i
z
e
 
t
h
e
 
s
t
a
t
i
s
t
i
c
a
l
 
d
i
s
t
a
n
c
e
 
b
e
t
w
e
e
n
 
t
h
e
b
a
c
k
g
r
o
u
n
d
 
a
n
d
 
o
b
s
e
r
v
a
t
i
o
n
s
 
t
o
 
o
b
t
a
i
n
 
t
h
e
 
o
p
t
i
m
a
l
 
s
e
t
 
o
f
i
n
i
t
i
a
l
 
c
o
n
d
i
t
i
o
n
s
 
a
n
d
 
f
l
a
m
e
 
p
a
r
a
m
e
t
e
r
s
8
Statistical distance between
analysis and background at t = 0
Statistical distance between
analysis and observations when
observations are available
B
 
a
n
d
 
R
 
a
r
e
 
c
o
v
a
r
i
a
n
c
e
 
m
a
t
r
i
c
e
s
Background
Observations
9
S
e
c
o
n
d
,
 
w
e
 
o
p
t
i
m
i
z
e
 
t
h
e
 
s
t
a
t
i
s
t
i
c
a
l
 
d
i
s
t
a
n
c
e
 
b
e
t
w
e
e
n
 
t
h
e
b
a
c
k
g
r
o
u
n
d
 
a
n
d
 
o
b
s
e
r
v
a
t
i
o
n
s
 
t
o
 
o
b
t
a
i
n
 
t
h
e
 
o
p
t
i
m
a
l
 
s
e
t
 
o
f
i
n
i
t
i
a
l
 
c
o
n
d
i
t
i
o
n
s
 
a
n
d
 
f
l
a
m
e
 
p
a
r
a
m
e
t
e
r
s
T
h
e
 
g
r
a
d
i
e
n
t
 
i
s
 
c
a
l
c
u
l
a
t
e
d
 
b
y
 
s
o
l
v
i
n
g
 
t
h
e
 
a
d
j
o
i
n
t
e
q
u
a
t
i
o
n
s
 
o
f
 
t
h
e
 
s
t
a
t
e
-
a
u
g
m
e
n
t
e
d
 
s
y
s
t
e
m
A
d
j
o
i
n
t
 
m
o
m
e
n
t
u
m
A
d
j
o
i
n
t
 
h
e
a
t
 
r
e
l
e
a
s
e
 
r
a
t
e
A
d
j
o
i
n
t
 
d
a
m
p
i
n
g
 
f
a
c
t
o
r
A
d
j
o
i
n
t
 
t
i
m
e
 
d
e
l
a
y
A
d
j
o
i
n
t
 
e
n
e
r
g
y
10
e.g. Magri, Juniper, JFM, 2013
T
h
e
 
t
r
a
n
s
i
e
n
t
 
d
y
n
a
m
i
c
s
 
s
t
r
o
n
g
l
y
 
d
e
p
e
n
d
s
 
o
n
 
t
h
e
 
n
u
m
b
e
r
 
o
f
 
m
o
d
e
s
.
T
h
e
 
h
i
g
h
e
r
 
t
h
e
 
n
u
m
b
e
r
,
 
t
h
e
 
m
o
r
e
 
i
n
t
r
i
c
a
t
e
 
t
h
e
 
i
n
t
e
r
a
c
t
i
o
n
.
 
H
o
w
e
v
e
r
,
a
f
t
e
r
 
t
h
e
 
t
r
a
n
s
i
e
n
t
,
 
t
h
e
 
d
y
n
a
m
i
c
s
 
a
r
e
 
d
o
m
i
n
a
t
e
d
 
b
y
 
t
h
e
 
f
i
r
s
t
 
m
o
d
e
s
P
3
 
M
o
d
e
s
1
0
 
M
o
d
e
s
Time
11
A
A
s
s
s
s
i
i
m
m
i
i
l
l
a
a
t
t
i
i
o
o
n
n
 
 
o
o
f
f
t
t
h
h
e
e
r
r
m
m
o
o
a
a
c
c
o
o
u
u
s
s
t
t
i
i
c
c
 
 
d
d
a
a
t
t
a
a
:
:
T
T
h
h
e
e
 
 
t
t
w
w
i
i
n
n
 
 
e
e
x
x
p
p
e
e
r
r
i
i
m
m
e
e
n
n
t
t
s
s
12
Time
50
 Observations
250
 Observations
When many modes interact
the true pressure signal can
result from more different
trajectories
13
1
0
 
M
o
d
e
s
D
u
r
i
n
g
 
t
h
e
 
t
r
a
n
s
i
e
n
t
,
 
u
s
i
n
g
 
m
o
r
e
 
o
b
s
e
r
v
a
t
i
o
n
s
 
d
o
e
s
 
n
o
t
i
m
p
r
o
v
e
 
t
h
e
 
a
n
a
l
y
s
i
s
Time
50
Observations
250
Observations
A
t
 
r
e
g
i
m
e
,
 
u
s
i
n
g
 
m
o
r
e
 
o
b
s
e
r
v
a
t
i
o
n
s
 
i
m
p
r
o
v
e
s
 
t
h
e
a
n
a
l
y
s
i
s
14
1
0
 
M
o
d
e
s
A
t
 
r
e
g
i
m
e
,
 
t
h
e
 
a
n
a
l
y
s
i
s
 
c
a
n
 
b
e
 
i
m
p
r
o
v
e
d
 
u
s
i
n
g
 
a
 
l
o
w
a
s
s
i
m
i
l
a
t
i
o
n
 
f
r
e
q
u
e
n
c
y
 
o
f
 
o
b
s
e
r
v
a
t
i
o
n
s
 
b
e
c
a
u
s
e
 
t
h
e
d
y
n
a
m
i
c
s
 
a
r
e
 
d
o
m
i
n
a
t
e
d
 
b
y
 
t
h
e
 
f
i
r
s
t
 
m
o
d
e
s
Sampling
frequency
=
 
4
Sampling
frequency
=
 
2
Time
15
1
0
 
M
o
d
e
s
W
e
 
c
a
n
 
d
e
f
i
n
e
 
c
o
s
t
 
f
u
n
c
t
i
o
n
a
l
s
 
t
o
 
c
o
n
s
t
r
a
i
n
 
t
h
e
 
p
r
e
s
s
u
r
e
 
o
r
p
r
e
s
s
u
r
e
 
m
o
d
e
s
.
 
T
h
e
 
l
a
t
t
e
r
 
i
s
 
m
o
r
e
 
e
f
f
e
c
t
i
v
e
 
f
o
r
 
d
a
t
a
a
s
s
i
m
i
l
a
t
i
o
n
 
o
f
 
t
h
e
r
m
o
a
c
o
u
s
t
i
c
s
 
i
n
s
t
a
b
i
l
i
t
i
e
s
Measurements
 of the
pressure
Measurements of the
pressure modes
Time
16
1
0
 
M
o
d
e
s
C
o
n
c
l
u
s
i
o
n
s
W
e
 
p
r
o
p
o
s
e
d
 
d
a
t
a
 
a
s
s
i
m
i
l
a
t
i
o
n
 
w
i
t
h
 
L
a
g
r
a
n
g
i
a
n
 
o
p
t
i
m
i
z
a
t
i
o
n
 
t
o
 
m
a
k
e
 
a
q
u
a
l
i
t
a
t
i
v
e
 
t
h
e
r
m
o
a
c
o
u
s
t
i
c
 
m
o
d
e
l
 
q
u
a
n
t
i
t
a
t
i
v
e
l
y
 
a
c
c
u
r
a
t
e
Assimilating the transient dynamics has a short-time benefit because of
nonlinear mode interaction
Assimilating the dynamics at regime has a long-time improvement because the
physics is dominated by a handful of modes
The minimum number of observations is constrained by the Shannon theorem
We suggest a more effective cost functional based on the spectral content of the
pressure
N
e
x
t
:
 
A
s
s
i
m
i
l
a
t
e
 
e
x
p
e
r
i
m
e
n
t
a
l
 
d
a
t
a
17
 
18
Back up slides
T
T
h
h
a
a
n
n
k
k
 
 
y
y
o
o
u
u
 
 
f
f
o
o
r
r
 
 
y
y
o
o
u
u
r
r
 
 
a
a
t
t
t
t
e
e
n
n
t
t
i
i
o
o
n
n
F
i
r
s
t
,
 
w
e
 
a
u
g
m
e
n
t
 
t
h
e
 
s
y
s
t
e
m
 
t
o
 
i
n
c
l
u
d
e
 
t
h
e
 
f
l
a
m
e
p
a
r
a
m
e
t
e
r
s
 
i
n
 
t
h
e
 
a
s
s
i
m
i
l
a
t
i
o
n
.
 
S
e
c
o
n
d
,
 
w
e
 
u
s
e
 
e
x
t
e
r
n
a
l
o
b
s
e
r
v
a
t
i
o
n
s
 
t
o
 
t
r
a
i
n
 
t
h
e
 
m
o
d
e
l
Low-order
thermoacoustic
model
Improved state
and parameters
(analysis)
Prediction
(background
solution)
Guess on initial
conditions and
parameters (tau,
beta)
Optimization of
statistical
distance
Observations
(external data)
Definition of a cost functional, J
20
Augmented system
T
h
e
 
A
d
j
o
i
n
t
 
t
i
m
e
 
s
e
r
i
e
s
Time
Time
Adjoint pressure
modes
Oscillating variables reflect
this behaviour in their adjoint
(Lagrange multipliers)
The sensitivity of J with
respect to  the heat
release parameter (
β
)
increases with time
P
h
y
s
i
c
a
l
 
i
n
t
e
r
p
r
e
t
a
t
i
o
n
:
J
 
i
s
 
s
e
n
s
i
t
i
v
e
 
t
o
 
t
h
e
 
t
o
t
a
l
e
n
e
r
g
y
 
i
n
p
u
t
 
21
Slide Note
Embed
Share

Thermoacoustic instabilities, a challenge for gas turbine manufacturers, are addressed through a low-order nonlinear thermoacoustic model. The model is discretized with natural acoustic modes, allowing for the quantitative accuracy of the qualitative model through data assimilation with Lagrangian optimization. The study focuses on capturing the time-delayed physics of thermoacoustic instabilities and calibrating flame parameters on the fly.

  • Thermoacoustic Instability
  • Data Assimilation
  • Lagrangian Optimization
  • Gas Turbine
  • Nonlinear Model

Uploaded on Oct 03, 2024 | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. Download presentation by click this link. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

E N D

Presentation Transcript


  1. Data assimilation in thermoacoustic instability with Lagrangian optimization T. Traverso1,2, A. Bottaro1, L. Magri2 1Universit degli Studi di Genova 2University of Cambridge 12th European Fluid Mechanics Conference, Vienna, 2018 T. Traverso, A. Bottaro, L. Magri

  2. Structure of the talk 1. Thermoacoustics: Motivation and background 2. A low-order thermoacoustic model 3. How to make a qualitative model quantitatively accurate Data assimilation with Lagrangian optimization Transient dynamics vs dynamics at regime Data assimilation at regime Data assimilation during transient dynamics A more effective cost functional 4. Conclusions T. Traverso, A. Bottaro, L. Magri 2

  3. Thermoacoustic oscillations are one of the biggest challenges faced by gas-turbine manufacturers Thermoacoustic oscillations are a multi-physical phenomenon, which is difficult to predict Uncontrolled oscillations can be detrimental, if not catastrophic Thermoacoustic instabilities Lieuwen & Yang, 2005 Poinsot, PROCI, 2017 T. Traverso, A. Bottaro, L. Magri 3

  4. A low-order, nonlinear thermoacoustic model captures the time-delayed physics, which is the key physical mechanism of thermoacoustic instabilities Longitudinal acoustics Uniform mean flow Zero Mach number Ideal boundary conditions Momentum equation Energy equation T. Traverso, A. Bottaro, L. Magri 4

  5. The thermoacoustic model is discretized with the natural acoustic modes Expansion in natural acoustic modes Discretized governing equations T. Traverso, A. Bottaro, L. Magri 5

  6. How to make a qualitative model quantitatively accurate? T. Traverso, A. Bottaro, L. Magri 6

  7. First, we augment the system to calibrate on the fly the flame parameters Parameters are regarded as constant variables 2?????????? ????? + ?? damping parameters (??) + 2 flame parameters (? and ?) degrees of freedom T. Traverso, A. Bottaro, L. Magri 7

  8. Second, we optimize the statistical distance between the background and observations to obtain the optimal set of initial conditions and flame parameters T. Traverso, A. Bottaro, L. Magri 8

  9. Second, we optimize the statistical distance between the background and observations to obtain the optimal set of initial conditions and flame parameters Background Statistical distance between analysis and background at t = 0 Observations Statistical distance between analysis and observations when observations are available B and R arecovariance matrices T. Traverso, A. Bottaro, L. Magri 9

  10. The gradient is calculated by solving the adjoint equations of the state-augmented system Adjoint momentum Adjoint energy Adjoint heat release rate Adjoint damping factor Adjoint time delay e.g. Magri, Juniper, JFM, 2013 T. Traverso, A. Bottaro, L. Magri 10

  11. The transient dynamics strongly depends on the number of modes. The higher the number, the more intricate the interaction. However, after the transient, the dynamics are dominated by the first modes 3 Modes P 10 Modes Time T. Traverso, A. Bottaro, L. Magri 11

  12. Assimilation of thermoacoustic data: The twin experiments T. Traverso, A. Bottaro, L. Magri 12

  13. During the transient, using more observations does not improve the analysis 10 Modes 50 Observations ? When many modes interact the true pressure signal can result from more different trajectories 250 Observations Time T. Traverso, A. Bottaro, L. Magri 13

  14. At regime, using more observations improves the analysis 10 Modes 50 Observations ? 250 Observations Time T. Traverso, A. Bottaro, L. Magri 14

  15. At regime, the analysis can be improved using a low assimilation frequency of observations because the dynamics are dominated by the first modes 10 Modes Sampling frequency = 4 ? Sampling frequency = 2 Time Highest frequency at regime is ? =?? ? For the Shannon theorem f=4 is necessary to improve the forecast Lower sampling frequency does not improve the analysis 2?= 2 T. Traverso, A. Bottaro, L. Magri 15

  16. We can define cost functionals to constrain the pressure or pressure modes. The latter is more effective for data assimilation of thermoacoustics instabilities 10 Modes Measurements of the pressure ? Measurements of the pressure modes Time T. Traverso, A. Bottaro, L. Magri 16

  17. Conclusions We proposed data assimilation with Lagrangian optimization to make a qualitative thermoacoustic model quantitatively accurate Assimilating the transient dynamics has a short-time benefit because of nonlinear mode interaction Assimilating the dynamics at regime has a long-time improvement because the physics is dominated by a handful of modes The minimum number of observations is constrained by the Shannon theorem We suggest a more effective cost functional based on the spectral content of the pressure Next: Assimilate experimental data T. Traverso, A. Bottaro, L. Magri 17

  18. Back up slides T. Traverso, A. Bottaro, L. Magri 18

  19. First, we augment the system to include the flame parameters in the assimilation. Second, we use external observations to train the model Definition of a cost functional, J Augmented system Improved state and parameters (analysis) Prediction (background solution) Optimization of statistical distance Low-order thermoacoustic model Guess on initial conditions and parameters (tau, beta) Observations (external data) T. Traverso, A. Bottaro, L. Magri 20

  20. The Adjoint time series Adjoint pressure Oscillating variables reflect this behaviour in their adjoint (Lagrange multipliers) modes Time The sensitivity of J with respect to the heat release parameter ( ) increases with time Physical interpretation: J is sensitive to the total energy input +(adjoint ) Time T. Traverso, A. Bottaro, L. Magri 21

Related


More Related Content

giItT1WQy@!-/#giItT1WQy@!-/#