Computational Models of DNA Damage and Repair in Radiation Therapy

D
N
A
 
d
a
m
a
g
e
 
m
o
d
e
l
s
 
o
f
 
d
i
f
f
e
r
e
n
t
 
c
o
m
p
l
e
x
i
t
y
 
l
e
v
e
l
s
d
o
 
n
o
t
 
p
r
e
d
i
c
t
 
f
u
n
d
a
m
e
n
t
a
l
 
d
i
f
f
e
r
e
n
c
e
s
 
i
n
 
t
h
e
i
n
d
u
c
t
i
o
n
 
o
r
 
r
e
p
a
i
r
 
o
f
 
d
a
m
a
g
e
S
h
a
n
n
o
n
 
T
h
o
m
p
s
o
n
9
th
 November 2023
Radiation therapy
Proton therapy
Superior tumour targeting
Higher linear energy transfer (LET)
Better biological response
Magnitude of increase uncertain
 
Computational models
Simulate DNA damage and repair
Compare biological effectiveness of
different radiation treatments
Image sourced from lp.knoxvilleproton.com
Computational modelling of radiation response
Modelling DNA damage and repair
1. Zhu et al. 2020 Phys. Med. Biol.
Predicting DSB damage
 
Monte Carlo models with different designs predict
the same trend in DSB yield with proton LET
Easier to overcome differences in yields compared
to differences in trends
Modelling DNA damage and repair
 
Questions:
How do different model assumptions impact
the predicted damage?
What is the damage model detail needed to
accurately predict DNA damage in line with
the experimental data?
 
- Various damage
model detail
Damage models assumptions
Different model assumptions
1.
Inclusion of chemical interactions
2.
Realistic nucleus geometries
3.
Initial strand break damage
4.
Track structure detail
 
All interactions
Damage models of different complexity 
Damage model optimisation
Methods
1 Gy
 nucleus irradiation
Proton LET
 0.6 – 60 keV/
µm
Fit DSB yield of simpler models to most
realistic chemistry model
 
Damage models agree for proton DSB yield
Removing model detail required updated
damage definitions and parameters
 
Investigate possible changes in:
DSB distribution and complexity
DSB repair & chromosome aberrations
Double strand break distribution
Differences due to nuclear geometry, more defined at higher LETs
Changes in DSB
 positions
 at close separations could
 impact
misrepair probability and biological response
Double strand break complexity
Complex DSBs more difficult to repair
– impact 
misrepair probability 
and
biological response
Models
 with 
same DSB yield have
different DSB complexities 
– different
biological response predicted?
Double strand break repair
Simulated repair of DSB damage
Small differences in the fraction of
misrepaired DSBs, increases with LET
Impact 
on the formation of lethal
chromosome
 aberrations?
Models predict similar trends in aberration yields despite varying levels of simulation detail
Chromosome aberrations
Alpha and carbon ion exposures – DSB yield
Check agreement in predicted damage for
models optimised 
for
 proton irradiations
Alpha LET: 2-188 keV/µm
Carbon LET: 12-142 keV/
µm
Predicted similar trends in DSB yields
Alpha and carbon ion exposures – chromosome aberrations
Predicted similar trends in chromosome
aberrations across
 radiation exposures
 
Over predicted compared to experimental
literature but could be brought into
better agreement
 
More complex models do not predict
fundamental differences in damage
 
Simpler models can be optimised to
have a similar predictive accuracy
Summary
Optimised damage
models
Proton DSB yield
Acknowledgements
The Patrick G Johnston Centre for Cancer Research
Computational Radiobiology Group
Stephen McMahon
Kevin Prise
Karl Butterworth
Francisco Guerra Liberal
  
John O’Connor
Lydia Gardner
Mohammed Dakheel
Slide Note
Embed
Share

Various computational models are used to predict DNA damage and repair mechanisms induced by different radiation treatments, such as X-rays and protons. These models simulate physical and chemical interactions, DNA geometries, and repair kinetics to compare biological effectiveness. Different models like KURBUC, PARTRAC, and Geant4-DNA are discussed in predicting double-strand break damage, highlighting the importance of understanding radiation responses at the molecular level.

  • DNA damage
  • Radiation therapy
  • Computational modeling
  • Repair mechanisms
  • Radiation treatment

Uploaded on Oct 03, 2024 | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. Download presentation by click this link. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

E N D

Presentation Transcript


  1. DNA damage models of different complexity levels DNA damage models of different complexity levels do not predict fundamental differences in the do not predict fundamental differences in the induction or repair of damage induction or repair of damage Shannon Thompson Shannon Thompson 9th November 2023

  2. Radiation therapy X-rays Protons Proton therapy Superior tumour targeting Higher linear energy transfer (LET) Better biological response Magnitude of increase uncertain Computational models Simulate DNA damage and repair Compare biological effectiveness of different radiation treatments Image sourced from lp.knoxvilleproton.com

  3. Computational modelling of radiation response Mechanistic models Simulate various radiation exposures: 1. Physical interactions 2. Chemical interactions 3. Nuclear and DNA geometries 4. Strand break and base damage 5. Double strand break (DSB) damage 6. DSB repair kinetics 7. Formation of chromosome aberrations 8. Cell response

  4. Modelling DNA damage and repair Chemical track Chemical interactions Physical interactions Proton track Biological geometries Double strand breaks (DSBs) within 10 bp DSB damage DSB repair NHEJ, HR, MMEJ Nucleus1 Cell response Chromosome aberrations 1. Zhu et al. 2020 Phys. Med. Biol.

  5. Predicting DSB damage Reference (Nikjoo et al 2001) (Friedland et al 2003) (Plante et al 2013) Physical model KURBUC Chemistry Yes Biological geometries Canonical B-DNA linear segments Fibroblast cell nucleus PARTRAC Yes RITRACKS No Cubic phantom (Friedland et al 2017) (McNamara et al 2017) (Meylan et al 2017) PARTRAC Yes Lymphocyte cell nucleus Topas-nBio No Circular DNA plasmid Geant4-DNA Yes Fibroblast cell nucleus (Henthorn et al 2018) DaMaRiS No Empty spherical phantom, sensitive fraction (Lampe et al 2018) Geant4-DNA Yes E. coli bacterial cell Monte Carlo models with different designs predict the same trend in DSB yield with proton LET (Sakata et al 2019) (Ingram et al 2020) Geant4-DNA Yes Fractal chromatin based human cell nucleus Chromosome structure, Hi-C DaMaRiS No Easier to overcome differences in yields compared to differences in trends (Zhu et al 2020) TOPAS-nBio Yes Fibroblast cell nucleus

  6. Modelling DNA damage and repair Topas-nBio Radiation interactions and DNA damage - Various damage model detail Chemical interactions Physical interactions Biological geometries DSB damage Medras Repair and response - Simplified damage generator Questions: How do different model assumptions impact the predicted damage? DSB repair What is the damage model detail needed to accurately predict DNA damage in line with the experimental data? Cell response

  7. Damage models assumptions Different model assumptions 1. Inclusion of chemical interactions 2. Realistic nucleus geometries 3. Initial strand break damage 4. Track structure detail Realistic nucleus Radially symmetric energy distribution All interactions Simple nucleus Physical interactions direct damage SB1 DSBs > 10 bp SB2 Chemical interactions - indirect damage

  8. Damage models of different complexity Medras Initial DSB Simple DNA Chemistry Physics-only Reducing model detail and computational time

  9. Methods 1 Gy nucleus irradiation Proton LET 0.6 60 keV/ m Fit DSB yield of simpler models to most realistic chemistry model Damage model optimisation Damage models agree for proton DSB yield Removing model detail required updated damage definitions and parameters Investigate possible changes in: DSB distribution and complexity DSB repair & chromosome aberrations

  10. Double strand break distribution Differences due to nuclear geometry, more defined at higher LETs Changes in DSB positions at close separations could impact misrepair probability and biological response

  11. Double strand break complexity Models with same DSB yield have different DSB complexities different biological response predicted? Complex DSBs more difficult to repair impact misrepair probability and biological response

  12. Double strand break repair Simulated repair of DSB damage Small differences in the fraction of misrepaired DSBs, increases with LET Impact on the formation of lethal chromosome aberrations?

  13. Chromosome aberrations Models predict similar trends in aberration yields despite varying levels of simulation detail

  14. Alpha and carbon ion exposures DSB yield Check agreement in predicted damage for models optimised for proton irradiations Alpha LET: 2-188 keV/ m Carbon LET: 12-142 keV/ m Predicted similar trends in DSB yields

  15. Alpha and carbon ion exposures chromosome aberrations Predicted similar trends in chromosome aberrations across radiation exposures Over predicted compared to experimental literature but could be brought into better agreement More complex models do not predict fundamental differences in damage Simpler models can be optimised to have a similar predictive accuracy

  16. Summary Predicted biological response Optimised damage models Validated model optimisation Impact of complexity and distribution Proton DSB yield Heavy ion exposures Key result Experimental validation Purpose Simpler models have the same predictive accuracy Identify model improvements for clinical research DSB & chromosome aberrations

  17. Acknowledgements The Patrick G Johnston Centre for Cancer Research Computational Radiobiology Group Stephen McMahon Kevin Prise Karl Butterworth Francisco Guerra Liberal John O Connor Lydia Gardner Mohammed Dakheel

More Related Content

giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#