Bio-inspired Networking and Complex Networks: A Survey

undefined
 
Bio-inspired Networking and
Complex Networks: A Survey
 
Sheng-Yuan Tu
 
1
 
Outline
 
Challenges in future wireless networks
Bio-inspired networking
Example 1: ant colony
Example 2: immune system
Complex networks
Network measures
Network models
Phenomena in complex networks
Dynamical processes on complex networks
Further research topics
 
2
 
Challenges in Future Wireless Networks
 
Scalability
By 2020, there will be 
trillion
 wireless devices [1] (e.g. cell
phone, laptop, health/safety care sensors, …)
Adaptation
Dynamic network condition and diverse user demand
Resilience
Robust to failure/malfunction of nodes and to intruders
 
3
 
Bio-inspired Networking
 
Biomimicry: studies designs and processes in nature and
then mimics them in order to solve human problems [3]
A number of principles and mechanisms in large scale
biological systems [2]
Self-organization: Patterns emerge, regulated by feedback loops,
without existence of leader
Autonomous actions based on local information/interaction:
Distributed computing with simple rule of thumb
Birth and death as expected events: Systems equip with self-
regulation
Natural selection and evolution
Optimal solution in some sense
A special issue on bio-inspired networking will be
published in IEEE JSAC in 2
nd
 quarter 2010.
 
4
 
Bio-inspired Networking
 
Observation,
verbal
description
Math. Model
(Diff. eq., prob.
methods, fuzzy
logic,…)
Verification,
hypothesis
testing
Parameter
evaluation,
prediction
Entities
mapping
Algorithm
establishment
Performance
evaluation
 
Biological Modeling
 
Engineering Applying
Parameter
tuning
 
5
 
Example 1: Foraging of Ant Colony
 
Stigmergy: interaction between ants is built on trail
pheromone [6]
Behaviors [6]:
Lay pheromone in both directions between food source and
nest
Amount of pheromone when go back to nest is according to
richness of food source (explore richest resource)
Pheromone intensity decreases over time due to evaporation
Stochastic model (no trail-laying in backward):
 
6
 
Example 1: Foraging of Ant Colony
 
Parameter evaluation:
: flux of ants
q
: amount of
pheromone laying
 
f
: rate of pheromone
evaporation
k
: attractiveness of an
unmarked path
n
: degree of
nonlinearity of the
choice
Shortest path search
 
[5]
 
7
 
Example 1: Foraging of Ant Colony
 
Application in ad-hoc network routing [4]
Modified behaviors
Probabilistic solution construction without forward
pheromone updating
Deterministic backward path with loop elimination and
pheromone updating
Pheromone updates based on solution quality
Pheromone evaporation (balance between 
exploration
 and
exploitation
)
 
8
 
Example 1: Foraging of Ant Colony
 
Algorithm
Initiation
 
Path selection
 
Pheromone update
 
 
More other applications can be found in swarm
intelligence [7].
 
9
 
Example 2: Immune System
 
Functional architecture of the IS [8]
Physical barriers: skin, mucous membranes of digestive,
respiratory, and reproductive tracts
Innate immune system: macrophages cells, complement
proteins, and natural killer cells against 
common
 pathogen
Adaptive
 immune system: B cells and T cells
B cells and T cell are created from stem cells in the bone marrow (
) and the thymus
 
(
胸腺
)
 
respectively by rearrangement of genes in
immature B/T cells.
Negative selection: if the antibodies of a B cell match any self antigen
in the bone marrow, the cell dies.
Self tolerance: almost all self antigens are presented in the thymus.
Clonal selection: a B cell divides into a number of clones with similar
but not strictly identical antibodies.
Danger signal: generated when a cell dies before begin old
 
10
 
Example 2: Immune System
 
Procedure
Antibodies of B cell match
antigens (signal 1b)
Antibodies of T cell binds the
antigens (signal 1t)
Matching >
Threshold?
Clonal selection
Receive
signal 2t?
Match
antigens?
Antigen
Presenting Cell
 
No
 
Yes
 
Yes
 
Yes
 
Danger Signal
 
Signal 2t
T cell sent signal 2b to B cell
 
11
 
Example 2: Immune System
 
Application in misbehavior detection in mobile ad-hoc
networks with dynamic source routing (DSR) protocol [8]
Entity mapping:
Body: the entire mobile ad-hoc network
Self-cells: well behaving nodes
Non-self cells: misbehaving nodes
Antigen: sequence of observed DSR protocol events in the
packet headers
Antibody: A pattern with the same format of antigen
Chemical binding: matching function
Bone marrow: a network with only certified nodes
Negative selection: antibodies are created during an offline
learning phase
 
12
 
Complex Networks
 
The above approach is more or less heuristic and is based
on trial and error.  What is theoretical framework to
understanding network behaviors?
Network measures
Degree/connectivity (
k
)
Degree distribution
Scale-free networks
Shortest path
Six degrees of separation (S. Milgram 1960s)
Small-world effect
Clustering coefficient (
C
)
 
 
Average clustering coefficient of all nodes with 
k
 links 
C(k)
 
[12]
 
13
 
Complex Networks
 
Network models
Random graphs (ER model)
Start with 
N
 nodes and connect each pair of nodes with prob. 
p
Node degrees follow a Poisson distribution
Generalized random graphs (with arbitrary degree distribution)
Assign 
k
i
 stubs to every vertex 
i=1,2,…,N
Iteratively choose pairs of stubs at random and join them together
Scale-free networks (evolution of networks)
Start with 
m
0
 unconnected vertices
Growth: add a new vertex with 
m
 
stubs at every time step
Preference attachment:
Hierarchical networks
Coexistence of modularity, local clustering, scale-free tology
 
Generalized random graphs [11]
 
14
 
Complex Networks
 
 
[12]
 
15
 
Phenomena in Complex Networks: Phase
Transition
 
Phase transition: as an external parameter is varied, a
change occurs in the macroscopic behavior of the system
under study [10].
Example: Emergence of giant component in generalized
random graphs [13]
Degree distribution : 
p
k
Outgoing degree distribution of neighbors:
With the aid of generating function, [13] derived distribution of
component sizes. Specially, the average component size is
 
 
Diverges if                  , and a giant component emerges.
For random graphs, a giant component emerges if
 
16
 
Phenomena in Complex Networks:
Synchronization
 
Synchronization: many natural systems can be described
as a collection of oscillators coupled to each other via an
interaction matrix and display synchronized behavior [10].
Application: distributed decision through self-
synchronization [14]
 
 
x
i
(t)
: state of the system          
y
i
: measurement (e.g. temperature)
g
i
(y
i
)
: local processing unit       
K
: global control loop gain
C
i
: local positive coefficient     
a
ij
: coupling among nodes
h
: coupling function                
w(t)
: coupling noise
   : propagation delay
 
17
 
Phenomena in Complex Networks:
Synchronization
 
Form of consensus: when 
h(x)=x
, system achieves
synchronize if and only if the directional graph is quasi
strongly connected (QSC) and
 
Example of QSC graph [14]
 
18
 
Dynamical Processes on Complex Networks
 
Epidemic spreading
SIR model
S: susceptible, I: infective, R: recovered
Fully mixed model
 
 
SIS model
Application in routing/data forwarding in mobile ad hoc
networks [15]
Search in networks
Search in power-law random graphs [16]
Random walk
Utilizing high degree nodes
 
19
 
Further Research Topics
 
Cognition and knowledge construction/representation of humans
Information theoretical approach to local information
In general, we can model the observing/sensing process as a channel, what
does the channel capacity mean?
What is relationship between channel capacity and statistical inference?
What are conditions that cooperative information helps (or they achieves
consensus)?
Example: spectrum sensing in cognitive radio networks
Global
information
Observed
local
information
 
Equivalent channel model
Cooperative
information
 
20
 
Reference
 
[1] K. C. Chen, Cognitive radio networks, lecture note.
[2] M. Wang and T. Suda, “The bio-networking architecture: A biologically inspired approach to the design of
scalable, adaptive, and survivable/available network application,”
[3] M. Margaliot, “Biomimicry and fuzzy modeling: A match made in heaven,” 
IEEE Computational
Intelligence Magazine
, Aug. 2008.
[4] M. Dorigo and T. Stutzle, 
Ant colony optimization
, 2004.
[5] S. C. Nicolis, “Communication networks in insect societies,” 
BIOWIRE
, pp. 155-164, 2008.
[6] S. Camazine, J. L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau, 
Self-organization in
biological systems
, 2003.
[7] E. Bonabeau, M. Dorigo, and G. Theraulaz, 
Swarm intelligence: From natural to artificial systems
, 1999.
[8] J. Y. Le Boudec and S. Sarafijanovic, “ An artificial immune system approach to misbehavior detection in
mobile ad-hoc networks,” 
Bio-ADIT
, pp. 96-111, Jan. 2004.
[9] M. E. J. Newman, “The structure and function of complex networks,” 2003
[10] A. Barrat, M. Barthelemy, and A. Vespignani, 
Dynamical processes on complex networks
, 2008
[11] C. Gros, 
Complex and adaptive dynamical systems
, 2008.
[12] A-L Barahasi and Z. N. Oltvai, “Network biology: Understanding the cell’s function organization,” 
Nature
Review
, Feb. 2004.
 
21
 
Reference
 
[13] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, “Random graphs with arbitrary degree distributions and
their applications,” 
Physical Review E., 
2001.
[14] S. Barbarossa and G. Scutari, “Bio-inspired sensor network design: Distributed decisions through self-
synchronization,” 
IEEE Signal Processing Magazine
, May 2007.
[15] L. Pelusi, A. Passarella, and M. Conti, “Opportunistic networking: Data forwarding in disconnected mobile
ad hoc networks,” 
IEEE Communications Magazine
, Nov. 2006.
[16] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman, “Search in power-law networks,”
Physical Review E.
, 2001.
 
 
 
22
Slide Note
Embed
Share

This survey explores the challenges in future wireless networks, bio-inspired networking principles, complex networks, and bio-inspired math modeling. It covers topics like self-organization, autonomous actions, foraging behavior of ant colonies, and more.

  • Networking
  • Complex Networks
  • Bio-inspiration
  • Wireless
  • Ant Colony

Uploaded on Sep 26, 2024 | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. Download presentation by click this link. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

E N D

Presentation Transcript


  1. Bio-inspired Networking and Complex Networks: A Survey Sheng-Yuan Tu 1

  2. Outline Challenges in future wireless networks Bio-inspired networking Example 1: ant colony Example 2: immune system Complex networks Network measures Network models Phenomena in complex networks Dynamical processes on complex networks Further research topics 2

  3. Challenges in Future Wireless Networks Scalability By 2020, there will be trillion wireless devices [1] (e.g. cell phone, laptop, health/safety care sensors, ) Adaptation Dynamic network condition and diverse user demand Resilience Robust to failure/malfunction of nodes and to intruders 3

  4. Bio-inspired Networking Biomimicry: studies designs and processes in nature and then mimics them in order to solve human problems [3] A number of principles and mechanisms in large scale biological systems [2] Self-organization: Patterns emerge, regulated by feedback loops, without existence of leader Autonomous actions based on local information/interaction: Distributed computing with simple rule of thumb Birth and death as expected events: Systems equip with self- regulation Natural selection and evolution Optimal solution in some sense A special issue on bio-inspired networking will be published in IEEE JSAC in 2ndquarter 2010. 4

  5. Bio-inspired Networking Math. Model (Diff. eq., prob. methods, fuzzy logic, ) Observation, verbal description Entities mapping Algorithm establishment Parameter evaluation, prediction Verification, hypothesis testing Performance evaluation Parameter tuning Biological Modeling Engineering Applying 5

  6. Example 1: Foraging of Ant Colony Stigmergy: interaction between ants is built on trail pheromone [6] Behaviors [6]: Lay pheromone in both directions between food source and nest Amount of pheromone when go back to nest is according to richness of food source (explore richest resource) Pheromone intensity decreases over time due to evaporation Stochastic model (no trail-laying in backward): C 1 C 2 1P + n dC dt ( ) k C 2P = = q P fC i P i i i i i m + n ( ) k C i P = 1 j m C 6 m

  7. Example 1: Foraging of Ant Colony Parameter evaluation: : flux of ants q: amount of pheromone laying f: rate of pheromone evaporation k: attractiveness of an unmarked path n: degree of nonlinearity of the choice Shortest path search m = = = = / 2 ( ) R q fk q q q [5] 1 2 m 7

  8. Example 1: Foraging of Ant Colony Application in ad-hoc network routing [4] Modified behaviors Probabilistic solution construction without forward pheromone updating Deterministic backward path with loop elimination and pheromone updating Pheromone updates based on solution quality Pheromone evaporation (balance between exploration and exploitation) 8

  9. Example 1: Foraging of Ant Colony Algorithm Initiation = = / m C 0 ij nn [ ] [ ] = ij ij = k ij 1/ ij d p Path selection ij [ ] [ ] il il k i l N Pheromone update m k k 1/ 0 otherwise if arc( , ) belongs to i j C T (1 ) + k ij = k ij ij ij ij ij = 1 k More other applications can be found in swarm intelligence [7]. 9

  10. Example 2: Immune System Functional architecture of the IS [8] Physical barriers: skin, mucous membranes of digestive, respiratory, and reproductive tracts Innate immune system: macrophages cells, complement proteins, and natural killer cells against common pathogen Adaptive immune system: B cells and T cells B cells and T cell are created from stem cells in the bone marrow ( ) and the thymus ( ) respectively by rearrangement of genes in immature B/T cells. Negative selection: if the antibodies of a B cell match any self antigen in the bone marrow, the cell dies. Self tolerance: almost all self antigens are presented in the thymus. Clonal selection: a B cell divides into a number of clones with similar but not strictly identical antibodies. Danger signal: generated when a cell dies before begin old 10

  11. Example 2: Immune System Antibodies of B cell match antigens (signal 1b) Procedure Matching > Threshold? Yes Danger Signal No Antibodies of T cell binds the antigens (signal 1t) Signal 2t Receive signal 2t? Antigen Presenting Cell Yes T cell sent signal 2b to B cell Match antigens? Yes Clonal selection 11

  12. Example 2: Immune System Application in misbehavior detection in mobile ad-hoc networks with dynamic source routing (DSR) protocol [8] Entity mapping: Body: the entire mobile ad-hoc network Self-cells: well behaving nodes Non-self cells: misbehaving nodes Antigen: sequence of observed DSR protocol events in the packet headers Antibody: A pattern with the same format of antigen Chemical binding: matching function Bone marrow: a network with only certified nodes Negative selection: antibodies are created during an offline learning phase 12

  13. Complex Networks The above approach is more or less heuristic and is based on trial and error. What is theoretical framework to understanding network behaviors? Network measures Degree/connectivity (k) Degree distribution Scale-free networks Shortest path Six degrees of separation (S. Milgram 1960s) Small-world effect Clustering coefficient (C) 3 # of triangles # of connected triples of vertices 13 ( ) (2< 3) P k k = C [12] Average clustering coefficient of all nodes with k links C(k)

  14. Complex Networks Network models Random graphs (ER model) Start with N nodes and connect each pair of nodes with prob. p Node degrees follow a Poisson distribution Generalized random graphs (with arbitrary degree distribution) Assign ki stubs to every vertex i=1,2, ,N Iteratively choose pairs of stubs at random and join them together Scale-free networks (evolution of networks) Start with m0 unconnected vertices Growth: add a new vertex with m stubs at every time step Preference attachment: Hierarchical networks Coexistence of modularity, local clustering, scale-free tology 14 = ( ) k / k k i i j j Generalized random graphs [11]

  15. Complex Networks 15 [12]

  16. Phenomena in Complex Networks: Phase Transition Phase transition: as an external parameter is varied, a change occurs in the macroscopic behavior of the system under study [10]. Example: Emergence of giant component in generalized random graphs [13] Degree distribution : pk Outgoing degree distribution of neighbors: With the aid of generating function, [13] derived distribution of component sizes. Specially, the average component size is 2 1 2 k k = + ( 1) / q k p jp + 1 k k j j k = + s 2 Diverges if , and a giant component emerges. For random graphs, a giant component emerges if 16 2 2 k k = 1) 1 ( k p N

  17. Phenomena in Complex Networks: Synchronization Synchronization: many natural systems can be described as a collection of oscillators coupled to each other via an interaction matrix and display synchronized behavior [10]. Application: distributed decision through self- synchronization [14] N = + + 1 ( ) ( ) [ ( ) ( )] ( ) x t g y KC a h x t x t w t i i i i ij j ij i i = 1 j xi(t): state of the system yi: measurement (e.g. temperature) gi(yi): local processing unit K: global control loop gain Ci: local positive coefficient aij: coupling among nodes h: coupling function w(t): coupling noise : propagation delay 17 ij

  18. Phenomena in Complex Networks: Synchronization Form of consensus: when h(x)=x, system achieves synchronize if and only if the directional graph is quasi strongly connected (QSC) and N i i c g y ( ) i i = = lim t ( ) 1 x t i q N N + ij ij a i i c K i = = 1 1 i i Example of QSC graph [14] 18

  19. Dynamical Processes on Complex Networks Epidemic spreading SIR model S: susceptible, I: infective, R: recovered Fully mixed model ds di is dt dt dr dt = = = , , is i i SIS model Application in routing/data forwarding in mobile ad hoc networks [15] Search in networks Search in power-law random graphs [16] Random walk Utilizing high degree nodes 19 ( ) P k k 3(1 2/ ) s N 2 4/ s N

  20. Further Research Topics Cognition and knowledge construction/representation of humans Information theoretical approach to local information In general, we can model the observing/sensing process as a channel, what does the channel capacity mean? What is relationship between channel capacity and statistical inference? What are conditions that cooperative information helps (or they achieves consensus)? Example: spectrum sensing in cognitive radio networks Cooperative information Global information Observed local information 20 Equivalent channel model

  21. Reference [1] K. C. Chen, Cognitive radio networks, lecture note. [2] M. Wang and T. Suda, The bio-networking architecture: A biologically inspired approach to the design of scalable, adaptive, and survivable/available network application, [3] M. Margaliot, Biomimicry and fuzzy modeling: A match made in heaven, IEEE Computational Intelligence Magazine, Aug. 2008. [4] M. Dorigo and T. Stutzle, Ant colony optimization, 2004. [5] S. C. Nicolis, Communication networks in insect societies, BIOWIRE, pp. 155-164, 2008. [6] S. Camazine, J. L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau, Self-organization in biological systems, 2003. [7] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm intelligence: From natural to artificial systems, 1999. [8] J. Y. Le Boudec and S. Sarafijanovic, An artificial immune system approach to misbehavior detection in mobile ad-hoc networks, Bio-ADIT, pp. 96-111, Jan. 2004. [9] M. E. J. Newman, The structure and function of complex networks, 2003 [10] A. Barrat, M. Barthelemy, and A. Vespignani, Dynamical processes on complex networks, 2008 [11] C. Gros, Complex and adaptive dynamical systems, 2008. [12] A-L Barahasi and Z. N. Oltvai, Network biology: Understanding the cell s function organization, Nature Review, Feb. 2004. 21

  22. Reference [13] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Random graphs with arbitrary degree distributions and their applications, Physical Review E., 2001. [14] S. Barbarossa and G. Scutari, Bio-inspired sensor network design: Distributed decisions through self- synchronization, IEEE Signal Processing Magazine, May 2007. [15] L. Pelusi, A. Passarella, and M. Conti, Opportunistic networking: Data forwarding in disconnected mobile ad hoc networks, IEEE Communications Magazine, Nov. 2006. [16] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman, Search in power-law networks, Physical Review E., 2001. 22

Related


More Related Content

giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#