Skyline computation - PowerPoint PPT Presentation


Skyline High School IB Program Overview

Explore the International Baccalaureate (IB) program at Skyline High School - a community fostering spirit, achievement, and respect. Discover information on program benefits, eligibility, enrollment, and key statistics. Meet the dedicated program coordinator and learn about the diverse student part

2 views • 41 slides


Computability: Exploring Theoretical Limits of Computation

Delve into computability theory, focusing on what is computable and the limits of computation. Explore concepts like Rice's Theorem, the Halting Problem, and classes of expressiveness in computability theory, such as combinational logic, finite-state machines, pushdown automata, and Turing machines.

5 views • 43 slides



Overview of Distributed Systems: Characteristics, Classification, Computation, Communication, and Fault Models

Characterizing Distributed Systems: Multiple autonomous computers with CPUs, memory, storage, and I/O paths, interconnected geographically, shared state, global invariants. Classifying Distributed Systems: Based on synchrony, communication medium, fault models like crash and Byzantine failures. Comp

9 views • 126 slides


Computation of Machine Hour Rate: Understanding MHR and Overhead Rates

Computation of Machine Hour Rate (MHR) involves determining the overhead cost of running a machine for one hour. The process includes dividing overheads into fixed and variable categories, calculating fixed overhead hourly rates, computing variable overhead rates, and summing up both for the final M

4 views • 18 slides


Enhanced Security in Multiparty Computation

Explore the improved black-box constructions of composable secure computation, focusing on definitions, objectives, and the formalization basics of multiparty computation (MPC). Learn about the motivating security aspects in MPC and the real/ideal paradigm. Discover how MPC security involves compari

1 views • 68 slides


Understanding Numerical Methods and Errors in Computation

Delve into the world of numerical methods through the guidance of Dr. M. Mohamed Surputheen. Explore topics such as solving algebraic and transcendental equations, simultaneous linear algebraic equations, interpolation, numerical integration, and solving ordinary differential equations. Learn about

0 views • 130 slides


Trust Income Computation and Application Guidelines

Learn about income computation of trusts using ITR-5 vs. ITR-7, types of institutions, components of income, application of income, and important guidelines including amendments by FA2022 for charitable and religious trusts.

0 views • 47 slides


Secure Computation Techniques in RAM Models with Efficient Automation

Explore the automation of efficient RAM-model secure computation techniques, including examples such as secure binary search. Discover how traditional solutions using circuit abstractions can be improved for sub-linear time computation through methods like Oblivious RAM. Learn about techniques such

0 views • 37 slides


Secure Multiparty Computation for Department of Education Data Sharing

This report discusses the use of Secure Multiparty Computation (SMC) to enable sharing of sensitive Department of Education data across organizational boundaries. The application of SMC allows for joint computation while keeping individual data encrypted, ensuring privacy and security within the Nat

0 views • 15 slides


Advancements in Active Secure Multiparty Computation (MPC)

Delve into the realm of secure multiparty computation under 1-bit leakage, exploring the intersection of DP algorithms, MPC, and the utilization of leakage for enhanced performance. Discover the overhead implications of achieving active security, as well as the evolution of secure computation protoc

0 views • 43 slides


Enhancing Computation in Physics Education Using Cognitive Approaches

Utilizing evidence-based methods, this study explores incorporating computation in physics courses, focusing on instructional design, student knowledge states, and preparation for future learning. It discusses common conceptual difficulties in quantum mechanics and proposes cognitive theory-based st

0 views • 24 slides


Secure Multiparty Computation: Enhancing Privacy in Data Sharing

Secure multiparty computation (SMC) enables parties with private inputs to compute joint functions without revealing individual data, ensuring privacy and correctness. This involves computations on encrypted data using techniques like homomorphic encryption for scenarios like e-voting. SMC serves as

2 views • 27 slides


Understanding Sequence Alignment and Scoring Matrices

In this content, we dive into the fundamentals of sequence alignment, Opt score computation, reconstructing alignments, local alignments, affine gap costs, space-saving measures, and scoring matrices for DNA and protein sequences. We explore the Smith-Waterman algorithm (SW) for local sequence align

0 views • 26 slides


COMET: Code Offload by Migrating Execution - OSDI'12 Summary

The research paper discusses COMET, a system for transparently offloading computation from mobile devices to network resources to improve performance. It outlines the goals of COMET, its design, and evaluation, focusing on distributed shared memory and bridging computation disparity through offloadi

0 views • 31 slides


Rapid Integration of Skyline with CHORUS Cloud for Large-Scale Proteomics Projects

Environment for targeted proteomics allows rapid processing of quantitative proteomics projects by integrating Skyline with CHORUS Cloud. The approach involves chromatography-based quantification, DIA chromatogram extraction, fit-for-purpose discovery proteomics, and a comparison of DIA versus SRM m

0 views • 24 slides


Exploring Challenges and Opportunities in Processing-in-Memory Architecture

PIM technology aims to enhance performance by moving computation closer to memory, improving bandwidth, latency, and energy efficiency. Despite initial setbacks, new strategies focus on cost-effectiveness, programming models, and overcoming implementation challenges. A new direction proposes intuiti

0 views • 43 slides


Actively Secure Arithmetic Computation and VOLE Study

Exploring actively secure arithmetic computation and VOLE with constant computational overhead at Tel Aviv University. Understanding how functions are represented in secure computation using arithmetic circuits over boolean circuits. Efficiently evaluating arithmetic circuits over large finite field

0 views • 36 slides


Enhancing Mobile-Cloud Computing with Autonomous Agents Framework

Autonomous Agents-based Mobile-Cloud Computing (MCC) refers to moving computing tasks to powerful centralized platforms in the cloud, offering advantages like extending battery life and dynamic resource provisioning. However, an inflexible split of computation between mobile and cloud platforms lead

0 views • 22 slides


Enhancing Multi-Party Computation Efficiency Through ORAM Techniques

Explore the realm of efficient random access in multi-party computation through the reevaluation of classic schemes and the introduction of new approaches. Discover the potential of ORAM in improving performance and reducing costs in various computational tasks, such as secure multi-party computatio

0 views • 22 slides


Enhancing I/O Performance on SMT Processors in Cloud Environments

Improving I/O performance and efficiency on Simultaneous Multi-Threading (SMT) processors in virtualized clouds is crucial for maximizing system throughput and resource utilization. The vSMT-IO approach focuses on efficiently scheduling I/O workloads on SMT CPUs by making them "dormant" on hardware

0 views • 31 slides


Bootstrapping in Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) allows evaluation of unbounded-depth circuits without being limited by specific parameters. Bootstrapping is a critical technique to achieve full homomorphism by refreshing ciphertexts, enabling decryption functionalities within the encryption scheme. This process

0 views • 38 slides


Homomorphic Encryption and RLWE Schemes Overview

Homomorphic encryption allows computation on encrypted data, enabling privacy in outsourced computing services and applications like spam filters for encrypted mail. The Ring Learning With Errors (RLWE) scheme and its properties are discussed, along with symmetric encryption from RLWE and fully homo

0 views • 16 slides


Efficient Multi-Party Computation Techniques

Explore the innovative approaches to Multi-Party Computation (MPC) such as MPC via Fully Homomorphic Encryption (FHE) and Multi-Key FHE. The focus is on minimizing round complexity and achieving secure distributed computations. Learn about key concepts, protocols, and advancements in the realm of MP

0 views • 17 slides


Effective Leadership in Skyline College Academic Senate Pre-Election Planning

Understanding the responsibilities and time commitments necessary for effective leadership in Skyline College Academic Senate pre-election planning is crucial. This involves preparing for the role, releasing time for key positions, and detailing obligations for the President and Vice President, incl

0 views • 14 slides


Balanced Graph Edge Partition and Its Practical Applications

Balanced graph edge partitioning is a crucial problem in graph computation, machine learning, and graph databases. It involves partitioning a graph's vertices or edges into balanced components while minimizing cut costs. This process is essential for various real-world applications such as iterative

0 views • 17 slides


Exploring Garbled RAM and Secure Computation

Garbled RAM, a concept based on garbled circuits, allows for secure two-party computation with implications for communication and computational complexities. The progression from basic to more ambitious scenarios in Garbled RAM models and the landscape of utilizing OWFs in a black-box manner for imp

0 views • 26 slides


Exploring Secure Computation in the Age of Information

Welcome to Secure Computation Lecture 1 by Arpita Patra. The course covers evaluation policies, projects, and references in the realm of secure computation. The content delves into the significance of information security across various sectors, emphasizing the importance of safeguarding sensitive d

0 views • 36 slides


Understanding the Limits of Computation in CMSC.281 Undecidability

Exploring the concept of undecidability in computing, we delve into the question of whether there are tasks that cannot be computed. The journey leads us to the theorem that the language ATM, defined as containing Turing Machine descriptions accepting input strings, is undecidable, showcasing the fu

0 views • 14 slides


Exploring Sums of Powers of Positive Integers Through Leibnitz's Method

Students are introduced to the computation of sums of powers of positive integers through Leibnitz's Method and other techniques in the context of finding areas under curves and exploring integration. The presentation delves into the origins of these formulas and their computation, reflecting on the

0 views • 24 slides


Secure Two-Party Computation and Basic Secret-Sharing Concepts

In today's lecture of "Foundations of Cryptography," the focus is on secure two-party and multi-party computation, emphasizing semi-honest security where Alice and Bob must compute without revealing more than necessary. Concepts such as real-world vs. ideal-world scenarios, the existence of PPT simu

0 views • 27 slides


Linear Communication in Secure Multiparty Computation for Efficient and Fast Processing

The research focuses on achieving perfectly secure multiparty computation (MPC) with linear communication and constant expected time. It explores efficient approaches using a broadcast-hybrid model and P2P communication, aiming to balance speed and efficiency in MPC. The study highlights the importa

0 views • 23 slides


Understanding REC and SEC Coordinates in Geodesy

Geodesist Boris Kanazir and NSRS Modernization Manager Dru Smith delve into the definitions, differences, and purposes of Reference Epoch Coordinates (RECs) and Survey Epoch Coordinates (SECs) at the 2021 Geospatial Summit. OPUS coordinates, SEC computation by NGS every four weeks, REC re-computatio

0 views • 17 slides


Evolutionary Computation and Genetic Algorithms Overview

Explore the world of evolutionary computation and genetic algorithms through a presentation outlining the concepts of genetic algorithms, parallel genetic algorithms, genetic programming, evolution strategies, classifier systems, and evolution programming. Delve into scenarios in the forest where gi

0 views • 51 slides


Theory of Computation Winter 2022: Learning Goals and Key Concepts

Explore the key concepts in the Theory of Computation for Winter 2022, including decision problems, reductions, undecidability, and the relationship between HALTTM and ATM. Learn about decidable, recognizable, and undecidable problems as well as the importance of reductions in proving undecidability

0 views • 27 slides


Undecidability and Reductions in Theory of Computation

Explore the undecidability of the halting problem and ATM, using reductions to show their non-decidability. Discover how problems are reduced from A to B in computation theory, enabling the solution of one problem by solving another.

0 views • 30 slides


Overview of Universality and Church-Turing Hypothesis

The universality of computation encompasses physical and mathematically defined computation, along with the concept of Turing machines and universal computers. The Church-Turing Hypothesis posits that everything computable can be computed by a Turing machine. The modern interpretation extends this t

0 views • 27 slides


Automata Theory and Theory of Computation Overview

This course overview covers concepts in automata theory and theory of computation, including formal language classes, grammars, recognizers, theorems in automata theory, decidability, and intractability of computational problems. The Chomsky hierarchy, interplay between computing components, modern-

0 views • 42 slides


Understanding Non-SD Languages in Theory of Computation

Explore the concept of Non-SD languages in the theory of computation, which are larger in number compared to SD languages. Non-SD languages involve infinite search or analyzing whether a Turing Machine will loop indefinitely. Discover examples and insights into proving languages are not SD through c

0 views • 38 slides


Software Effort Estimation using COCOMO Model

Effort computation and adjustment factors play a crucial role in estimating software development effort. In this detailed guide, we explore the COCOMO model, effort computation using arpma, adjustment factors like cost drivers, and various considerations such as database size, product complexity, an

0 views • 25 slides


Understanding Skyline Computation Algorithms and Expected Size Analysis

Explore topics related to skyline computation algorithms, skyline point generation, and expected skyline size analysis. Learn about Pareto optimality, dependent points generation, and the expected size of skylining points in a random setting. Delve into the algorithms, probabilities, and complexitie

0 views • 25 slides