Robot motion planning - PowerPoint PPT Presentation


ECMC: Open Source Motion Control with EtherCAT Overview

ECMC is an open-source motion control module designed for EPICS environments, integrating EtherLab's EtherCAT master. It offers advanced features like synchronized motion, distributed clocks, and PLC functionalities, making it ideal for various automation applications. The system architecture and ha

0 views • 42 slides


Introduction to Motion Planning in Autonomous Robotics

Explore the concept of motion planning in autonomous robotics through graphical representations called roadmaps. Understand the importance of representation, transformations, and problem instances in motion planning algorithms. Learn about the accessibility and connectivity characteristics of roadma

0 views • 64 slides



How To Use Wired Motion Sensor Closet Light

Motion sensor lights provide the convenience of constant, powerful illumination without the need to manually turn them on or off. Additionally, it saves time while looking for switches in places with low lighting that you could miss at first. Compared to traditional lighting solutions, motion sensor

1 views • 1 slides


Understanding Projectile Motion: Characteristics, Examples, and Formulas

Projectile motion involves the motion of objects under the influence of gravity, with both vertical and horizontal components. This type of motion is seen in activities such as throwing a ball, kicking a football, or dropping objects. The motion is described by specific formulas, including calculati

1 views • 19 slides


Understanding Projectile Motion: Components and Trajectories

Projectile motion involves the horizontal and vertical components of motion, where objects follow parabolic trajectories under the influence of gravity. The horizontal and vertical motions are independent of each other, leading to a variety of curved paths. This phenomenon is illustrated through exa

1 views • 13 slides


Understanding Newton's First Law of Inertia

Newton's first law of inertia states that objects remain at rest or in uniform motion unless acted upon by an external force. This law, also known as the law of inertia, explains how objects tend to maintain their current state of motion unless influenced by an external force. Objects at rest stay a

0 views • 14 slides


Understanding Motion: Frames of Reference and Relative Motion

Motion is defined as a change in position over time. To describe motion accurately, one needs to understand frames of reference and relative motion. Frames of reference are systems of objects used to determine if something is in motion, while relative motion involves movement in relation to a refere

3 views • 14 slides


Understanding Curvilinear Motion with Cylindrical Coordinates in Physics

Cylindrical coordinates, specifically the r- coordinate system, are useful in describing curvilinear motion. This system helps explain motion in relation to a fixed origin, making it ideal for scenarios involving rotation or changes in angle. By using radial and transverse unit vectors, positions, v

1 views • 16 slides


Understanding Position, Motion, and Displacement in Physics

Position in physics refers to a place or location within a coordinate system, crucial for describing an object's motion through time. It involves factors like observer frame, coordinates, and whether the object is at rest or in motion. Motion is defined by an object's position, speed, direction, and

0 views • 15 slides


Understanding Forces in Motion Throughout History

Forces play a crucial role in causing changes in motion, as observed through the perspectives of Aristotle on natural and violent motion, the beliefs about Earth's rest, and Copernicus challenging the geocentric view with a heliocentric model. The concept of forces driving motion has evolved over ce

1 views • 27 slides


Understanding Motion Under Constant Acceleration

Constant acceleration refers to motion where the speed increases by the same amount each second. It is exemplified in scenarios like free fall due to gravity, where objects experience a consistent acceleration of approximately 10 meters per second squared. This type of motion plays a significant rol

0 views • 11 slides


Understanding Motion: Concepts and Definitions in Physics

Motion in physics is defined as the change in position of an object over time. It involves concepts like rest, motion, distance, displacement, rate of motion, and types of motion. Rest and motion are relative to a reference point, while distance and displacement differ in their scalar and vector nat

0 views • 25 slides


Motion Planning in Klamp't: Overview and Key Concepts

Motion Planning in Klamp't covers key concepts such as C-Space and robot-level abstractions, planning algorithms, toolkit components, and the kinematic planning pipeline. It compares to other packages like OMPL, MoveIt!, and OpenRAVE, offering PRM-style planners at the C-Space level and support for

0 views • 26 slides


Autonomous Obstacle Avoidance Robot Using ROS, Lidar, and Raspberry Pi with Matlab Path Planning

Obstacle avoidance in robotics has evolved from basic collision avoidance to autonomous path planning with the use of Lidar and ROS. This project involves mapping the environment using Lidar scans and implementing a path planning algorithm in Matlab to navigate around obstacles. By utilizing a Raspb

0 views • 15 slides


Robot Motion Planning Algorithms Overview

Explore Boustrophedon Cell Decomposition, Probabilistic Road Maps, and RRT Algorithm for robot motion planning. Learn how PRMs perform in practice but can face challenges in narrow passages leading to disconnected graphs.

0 views • 5 slides


Strategic Planning for Sustainable Development: A Comprehensive Overview

Planning and strategic planning play crucial roles in achieving sustainable development goals. This presentation delves into the concepts of planning, strategic planning, sustainable development, the SDGs, types of planning, steps in the strategic planning process, and the importance and challenges

0 views • 20 slides


Understanding Linear and Rotational Motion in Physics

Explore the concepts of linear momentum, center of mass, rotational motion, and angular displacement in physics. Learn how to determine the center of mass of objects, analyze motion of particle groups, and understand the conservation of momentum in systems under external forces. Delve into the funda

0 views • 18 slides


Understanding Circular Motion in Physics

Circular motion involves objects moving in a circular path at a constant speed, experiencing acceleration and centripetal force. This motion is characterized by angular speed, centripetal acceleration, and the necessary centripetal force. The concept of uniform circular motion and angular displaceme

3 views • 38 slides


Understanding Newton's First Law of Motion

Exploring the foundational concepts of motion and forces, this content delves into Isaac Newton's First Law of Motion. Describing how objects behave when the net force acting on them is zero, the law highlights the significance of inertia and balanced forces in determining an object's state of rest

0 views • 9 slides


Understanding Vertical Motion and Gravity in Kinematics

Explore the principles of vertical motion and gravity in kinematics through scenarios involving throwing objects, free-fall motion, and calculating heights. Learn how to model vertical motion with acceleration due to gravity, find maximum heights of thrown objects, solve extended problems, and under

2 views • 12 slides


Robotic Motion Planning: Approaches and Research Issues

This content delves into various aspects of robot motion planning, covering topics such as problem-solving in mobile robotics, strategic planning, obstacle avoidance, control, base algorithms like graph search, pros and cons of different approaches, research issues, and objectives related to travel.

0 views • 26 slides


Understanding Newton's Laws of Motion

Explore the fundamental concepts of Newton's Laws of Motion, including net forces, combining forces, balanced versus unbalanced forces, and the concept of inertia. Learn how these principles explain the behavior of objects in motion and at rest, and discover the impact of mass on an object's resista

0 views • 17 slides


Understanding Joint Motion: Osteokinematic and Arthrokinematic Movements

Joint motion involves osteokinematic movements, which are under voluntary control and include flexion, extension, and more. End-feel sensations like bony, capsular, and springy block indicate different joint conditions. Arthrokinematic motion refers to how joint surfaces move during osteokinematic m

0 views • 17 slides


Understanding Newton's Laws of Motion

Newton's Laws of Motion explain the relationship between forces and motion. The first law states that an object in motion stays in motion unless acted upon by a net force, while the second law describes how force is related to an object's mass and acceleration. The third law states that for every ac

0 views • 21 slides


Mind Controlled Robot Project by Adithya Kumar - Eighth Grade

Adithya Kumar, an eighth-grade student, has designed a groundbreaking Mind Controlled Robot project that allows users to control a robot using brain waves. The project utilizes a Mindwave EEG headset, Arduino Uno motherboard kit, and various materials. Adithya's detailed experimental design and proc

0 views • 11 slides


ROBOSYNTH: SMT-Based Synthesis of Integrated Task and Motion Plans

The ROBOSYNTH system aims to facilitate the creation of task plans that are feasible at the motion level by integrating task and motion planning. It provides a structured approach to generating plans, considering constraints on robot paths. The system employs a C program with defined actions and con

1 views • 25 slides


Innovative Autonomous Ground Robot for Orchard Management

This project showcases an Autonomous Ground Robot designed for orchard management tasks. The robot's hardware, software design, problem identification, and objectives are outlined. Key features include YOLO-based apple counting, SLAM navigation, and soil moisture detection. The system runs on Ubuntu

0 views • 19 slides


Understanding Mobile Robot Kinematics for Navigation

Exploring the kinematics of wheeled locomotion in mobile robots, this content covers forward and inverse kinematics, instantaneous center of curvature, and the use of kinematics for robot navigation. Highlighting the challenges of measuring robot position and the integration of wheel velocities for

0 views • 52 slides


Understanding Robot Localization Using Kalman Filters

Robot localization in a hallway is achieved through Kalman-like filters that use sensor data to estimate the robot's position based on a map of the environment. This process involves incorporating measurements, updating state estimates, and relying on Gaussian assumptions for accuracy. The robot's u

0 views • 26 slides


Shy Robot Programming Challenge: Logic-Based Autonomous Robot

The Shy Robot is an autonomous robot equipped with two IR sensors to avoid obstacles. Its behavior is determined by a logical control system - moving backward if both sensors detect an object, turning right if only the left sensor detects an object, turning left if only the right sensor detects an o

0 views • 5 slides


Understanding Newton's Laws of Motion

Newton's Laws of Motion describe how objects behave in response to external forces. The first law states that objects in motion remain in motion unless acted upon by a force, while objects at rest stay at rest. The second law relates force, mass, and acceleration, showing how they are interconnected

0 views • 11 slides


Strategic Staff Planning for Future Success

Strategic Staff Planning involves aligning workforce to future goals through short and long-term approaches. It includes 3 Horizons, Operational Workforce Planning, and Strategic Workforce Planning to ensure capabilities match organizational strategies. The process spans from tactical short-term pla

1 views • 9 slides


Installation of Robot-Mounted Detector on DIAD Beamline

Installing a robot-mounted detector on the DIAD beamline for the 2021 MOCRAF Workshop at the ICALEPCS conference. The robot arm holds a diffraction detector for dual imaging and diffraction purposes, ensuring safety for personnel, equipment, and integration into EPICS and GDA systems. Functionality

0 views • 28 slides


Understanding Motion and Newton's Laws

Explore the concepts of motion, distance, speed, and velocity as they relate to Newton's Laws of Motion. Learn about measuring motion, calculating speed, graphing motion on distance-time graphs, and understanding velocity. Discover how motion is constant and how relative motion is used. Practice cal

0 views • 36 slides


Python Create Library Overview

This Python program uses the Create library to send commands, enabling communication between your laptop's Bluetooth radio, the BAM on the Create robot, and the Create's controller. The library facilitates non-blocking commands for controlling the robot's movements and sensors, with specific instruc

0 views • 9 slides


Futuristic Patient Assistant Robot Enhancing Healthcare

This research project introduces a patient assistant robot supervised by Dr. Ahmed Mostafa and presented by a team comprising Amira Ibrahim Sayed, Asmaa Mohamed Saad, and Amna Ahmed Mohammed. The robot aims to assist individuals with infectious diseases by providing essential care and isolating them

0 views • 22 slides


Universal Collaborative Robot Platform Revolutionizing Robotics Industry

The Universal Collaborative Robot Platform is a game-changer in the robotics world, providing full autonomy, innovation, creativity, and enhanced productivity through robot collaboration. With features like universal robot communication protocols, centralized fleet management, mobile autonomy, and A

0 views • 14 slides


Understanding Motion and Newton's Laws

Motion is the constant change in position of objects, measured by distance and displacement. Speed is the rate of motion, while velocity includes direction. Graphing motion helps visualize speed changes over time. Newton's Laws explain the behavior of objects in motion.

0 views • 38 slides


Understanding Dependent and Relative Motion in Dynamics

Dependent Motion and Relative Motion are fundamental concepts in Dynamics, providing the foundation for future analysis. Dependent Motion involves constraints like ropes or cables, while Relative Motion considers observers in motion. Dynamics involves applying a limited set of equations in diverse w

0 views • 18 slides


Understanding Motion: Types and Physics

Motion refers to a body changing position with respect to its surroundings. Different types of motion include linear, rotatory, and oscillatory motion. The physics relating to motion is called Mechanics, which comprises Dynamics and Kinematics. Scalars and vectors play a crucial role in describing t

0 views • 8 slides