Quantum computation - PowerPoint PPT Presentation


PASQAL: QML Progress Panagiotis Barkoutsos, VP Quantum Algorithms

Discover the latest progress of PASQAL Quantum as Panagiotis Barkoutsos, VP Quantum Algorithms, presents the advancements in quantum technologies. This confidential update highlights the company's achievements in qubit count, global engagements, and their full-stack solution.

4 views • 16 slides


Neural quantum state tomography, improvements and applications

Advancements and potential applications of neural quantum state tomography, aiming to reduce the exponential classical memory required for expressing quantum states. It discusses the benefits of using machine learning techniques to process and analyze quantum data, such as cleaning up states, manipu

4 views • 26 slides



Cryptography,.Quantum-safe Cryptography& Quantum Cryptography

Dive into the world of cryptography, quantum-safe cryptography, and quantum technology as discussed in Maurizio D. Cina's presentation at CYBERDAYS in Prato. Topics include current cryptosystems, post-quantum cryptography, quantum key distribution, and future cryptosystems based on quantum algorithm

3 views • 17 slides


CERN Quantum Technologies Initiative Overview

The CERN Quantum Technologies Initiative (QTI) aims to explore the impact of quantum technology on CERN's physics programs. This phase involves identifying key areas for collaboration, conducting scientific investigations, and building quantum capacity. The strategy and roadmap were developed with i

6 views • 14 slides


Exploring Quantum Black Holes: Dual Dynamics and Brane Evaporation

Exploring the dual dynamics of quantum black holes reveals new perspectives on black hole evaporation. By placing black holes on branes, we can study their classical picture in higher dimensions. This approach provides insights that were previously unattainable, leading to a better understanding of

1 views • 28 slides


Near-Optimal Quantum Algorithms for String Problems

This paper discusses near-optimal quantum algorithms for various string problems like exact pattern matching, longest common substring, lexicographically minimal string rotation, longest palindromic substring, and more. It explores quantum black-box models, query complexities, and previous sublinear

0 views • 22 slides


Addressing The Quantum Threat: The Quantum Resistant Ledger

The Quantum Resistant Ledger (QRL) is a visionary blockchain and digital asset security solution designed to counter the emerging threat of quantum computing. With quantum technology advancing and traditional blockchains at risk, QRL offers an industrial-grade, quantum computer-resistant cryptocurre

2 views • 9 slides


Formal Verification of Quantum Cryptography by Dominique Unruh

Explore the significance of formal verification in quantum cryptography as discussed by Dominique Unruh from the University of Tartu. Understand the challenges, motivations, and current work in verifying quantum crypto protocols, and the potential impact of quantum computers on common encryption met

0 views • 25 slides


Introduction to Quantum Computing: Exploring the Future of Information Processing

Quantum computing revolutionizes information processing by leveraging quantum mechanics principles, enabling faster algorithms and secure code systems. Advancements in quantum information theory promise efficient distributed systems and combinatorial problem-solving. Discover the evolution of quantu

0 views • 68 slides


Near-Optimal Quantum Algorithms for String Problems - Summary and Insights

Near-Optimal Quantum Algorithms for String Problems by Ce Jin and Shyan Akmal presents groundbreaking research on string problem solutions using quantum algorithms. The study delves into various key topics such as Combinatorial Pattern Matching, Basic String Problems, Quantum Black-box Model, and mo

0 views • 25 slides


Understanding Operator Formalism in Quantum Mechanics

Dive into the world of quantum mechanics with Dr. N. Shanmugam as he explains the role of operators, their significance in quantum mechanics, and how they are used to determine physical quantities through expectation values. Explore concepts such as the Hamiltonian operator, time-independent Schrodi

1 views • 49 slides


Understanding Quantum Aspects of Electromagnetic Oscillations

Exploring the quantum nature of electromagnetic oscillations through concepts such as wave-particle duality, quantum harmonic oscillators, photon-number states, coherent light, and squeezed light. Delve into non-classical states, vacuum states, potential wells, and more in the fascinating world of q

0 views • 15 slides


Enhanced Security in Multiparty Computation

Explore the improved black-box constructions of composable secure computation, focusing on definitions, objectives, and the formalization basics of multiparty computation (MPC). Learn about the motivating security aspects in MPC and the real/ideal paradigm. Discover how MPC security involves compari

1 views • 68 slides


Exploring Quantum Mechanics: Illusion or Reality?

Delve into the fascinating realm of quantum mechanics with Prof. D. M. Parshuramkar as he discusses the contrast between classical and quantum mechanics. Discover how classical mechanics fails to predict the behavior of electrons in atoms and molecules, leading to the development of quantum mechanic

0 views • 70 slides


Understanding Quantum Chemistry and Electron Orbitals

Quantum chemistry plays a key role in determining chemical bonds, phase stabilities, and mineral physics through the study of electron orbitals, quantum numbers, and energy levels. This involves concepts such as the Schrödinger equation, quantum quantities, and the uncertainty principle. The arrang

0 views • 31 slides


Exploring Neural Quantum States and Symmetries in Quantum Mechanics

This article delves into the intricacies of anti-symmetrized neural quantum states and the application of neural networks in solving for the ground-state wave function of atomic nuclei. It discusses the setup using the Rayleigh-Ritz variational principle, neural quantum states (NQSs), variational pa

0 views • 15 slides


Architectural Principles for a Quantum Internet

This presentation discusses the architectural principles of a Quantum Internet, highlighting the need to manage and transmit entangled states. It outlines the challenges and differences between classical and quantum networks, emphasizing the use of entanglements as the basic unit of networking. The

1 views • 37 slides


Understanding Quantum Wires and Nanowires: Properties and Applications

Quantum wires, quantum dots, and nanowires are essential components in nanotechnology due to their unique properties and applications. Quantum wires are one-dimensional systems with restricted electron movement, while quantum dots are zero-dimensional, limiting electron movement in all dimensions. N

3 views • 12 slides


Secure Computation Techniques in RAM Models with Efficient Automation

Explore the automation of efficient RAM-model secure computation techniques, including examples such as secure binary search. Discover how traditional solutions using circuit abstractions can be improved for sub-linear time computation through methods like Oblivious RAM. Learn about techniques such

0 views • 37 slides


Performance of Post-Quantum Signatures: Analysis and Comparison

Explore the performance and characteristics of various post-quantum signature schemes including Lattice-based Dilithium, QTesla, Falcon, Symmetric Sphincs+, Picnic, Multivariate GEMSS, Rainbow, and more. Understand the implications of using these schemes in TLS, code signing, firmware updates, signe

0 views • 29 slides


Secure Multiparty Computation for Department of Education Data Sharing

This report discusses the use of Secure Multiparty Computation (SMC) to enable sharing of sensitive Department of Education data across organizational boundaries. The application of SMC allows for joint computation while keeping individual data encrypted, ensuring privacy and security within the Nat

0 views • 15 slides


Advancements in Active Secure Multiparty Computation (MPC)

Delve into the realm of secure multiparty computation under 1-bit leakage, exploring the intersection of DP algorithms, MPC, and the utilization of leakage for enhanced performance. Discover the overhead implications of achieving active security, as well as the evolution of secure computation protoc

0 views • 43 slides


Advancements in Quantum Systems Techniques for Density Matrix Minimization

Discover the innovative methods and applications of open quantum systems techniques for density matrix minimization. Explore the motivation behind the research, early developments, purification processes, linear scaling potentials, Bloch's method intricacies, quantum channel algorithms, canonical de

0 views • 22 slides


Exploring the World of Quantum Money and Cryptography

Delve into the realm of quantum money, computation, and cryptography, understanding the intricacies of semi-quantum money, consensus problems, post-quantum cryptography, and unique concepts like certifiable randomness and tokenized digital signatures.

6 views • 30 slides


Exploring 3D Transmon Qubits in Quantum Computing

This document delves into the initialization, read-out, and measurement techniques of 3D transmon qubits as integral components of quantum computing. It covers the underlying principles of superconducting qubits, SRF cavity utilization, and the roadmap for improving quantum memory and coherence time

0 views • 12 slides


Quantum Query Complexity Measures for Symmetric Functions

Explore the relationships between query complexity measures, including quantum query complexity, adversary bounds, and spectral sensitivity, in the context of symmetric functions. Analysis includes sensitivity graphs, the quantum query model, and approximate counting methods. Results cover spectral

0 views • 19 slides


COMET: Code Offload by Migrating Execution - OSDI'12 Summary

The research paper discusses COMET, a system for transparently offloading computation from mobile devices to network resources to improve performance. It outlines the goals of COMET, its design, and evaluation, focusing on distributed shared memory and bridging computation disparity through offloadi

0 views • 31 slides


Quantum Money Solution for Scalability Issue in Blockchain

Addressing the blockchain scalability problem, this study introduces a quantum money solution by Andrea Coladangelo and Or Sattath. It explores the challenges of resource-intensive transactions in traditional blockchain systems and proposes the use of public key quantum money as a secure and efficie

2 views • 24 slides


Actively Secure Arithmetic Computation and VOLE Study

Exploring actively secure arithmetic computation and VOLE with constant computational overhead at Tel Aviv University. Understanding how functions are represented in secure computation using arithmetic circuits over boolean circuits. Efficiently evaluating arithmetic circuits over large finite field

0 views • 36 slides


Enhancing Multi-Party Computation Efficiency Through ORAM Techniques

Explore the realm of efficient random access in multi-party computation through the reevaluation of classic schemes and the introduction of new approaches. Discover the potential of ORAM in improving performance and reducing costs in various computational tasks, such as secure multi-party computatio

0 views • 22 slides


QBism and Convivial Solipsism in Quantum Interpretations

QBism and Convivial Solipsism present different interpretations of quantum mechanics, focusing on the subjective nature of probabilities and experiences within the quantum formalism. QBism emphasizes the subjective interpretation of probability, considering the quantum state as a tool for assigning

0 views • 30 slides


Exploring Post-Quantum Cryptography and Constructive Reductions

Delve into the realm of post-quantum cryptography through an insightful journey of constructive reductions, rethinking cryptography assumptions, and the relationship between classical and post-quantum regimes. Discover the challenges, advancements, and goals in the quest for durable cryptographic al

0 views • 21 slides


Development of Quantum Statistics in Quantum Mechanics

The development of quantum statistics plays a crucial role in understanding systems with a large number of identical particles. Symmetric and anti-symmetric wave functions are key concepts in quantum statistics, leading to the formulation of Bose-Einstein Statistics for bosons and Fermi-Dirac Statis

1 views • 15 slides


Post-Quantum Cryptography in IEEE 802.11 - Current State and Future Concerns

Submission discusses the potential impact of post-quantum algorithms on IEEE 802.11 networks, highlighting the necessity to prepare for a post-quantum future. It explores the risks posed by quantum computing to existing cryptographic systems and emphasizes the importance of adopting post-quantum sol

0 views • 19 slides


Quantum Key Agreements and Random Oracles

This academic paper explores the impossibility of achieving key agreements using quantum random oracles, discussing the challenges and limitations in quantum communication, cryptographic protocols, quantum computation, and classical communication. The study delves into the implications of quantum ra

0 views • 29 slides


Exploring Secure Computation in the Age of Information

Welcome to Secure Computation Lecture 1 by Arpita Patra. The course covers evaluation policies, projects, and references in the realm of secure computation. The content delves into the significance of information security across various sectors, emphasizing the importance of safeguarding sensitive d

0 views • 36 slides


Quantum vs. Classical Computing: Exploring Forrelation Problem

Delve into the world of quantum and classical computing with the Forrelation problem that optimally separates the two realms. From Fourier correlations to quantum algorithms and classical lower bounds, explore the intricacies of distinguishing between quantum and classical computation through variou

0 views • 29 slides


Understanding Blockchain Vulnerabilities to Quantum Attacks

Explore the vulnerabilities of blockchains to quantum attacks and the potential impact of quantum devices on blockchain technologies. Learn about key concepts such as blockchain basics, proof-of-work, quantum computing, quantum computing algorithms, and vulnerabilities like ECDSA and peer-to-peer ne

0 views • 23 slides


Quantum Computing: Achievable Reality or Unrealistic Dream Workshop

Explore the intriguing realm of quantum computing through insightful lectures by Prof. Gil Kalai and Prof. Nadav Katz at the American Physical Society workshop. Delve into the possibilities, failures, and advancements in quantum information science. Join the discussion on the state-of-the-art develo

0 views • 13 slides


Insights on Quantum Computing: Bridging Theory and Reality

Delve into the world of quantum computing through a series of workshops and personal reflections. Explore the intersection of theoretical concepts with practical applications, highlighting the evolving landscape of quantum mechanics. The journey navigates discussions on electron spin, fundamental th

0 views • 12 slides