Eic collisions - PowerPoint PPT Presentation


Micro-resolution Unidirectional Sensor for Ice Collisions

Develop a micro-resolution unidirectional sensor for detecting ice collisions. The team members include Tim Shaw, Alec Macchia, Cyrus Nichols, Sophia Trissell, Riley Gordon, Bradley Bishop, Tyler Schwinck, Garrett Lycett, and Jarrett Bartson.

0 views • 57 slides


Career Opportunities in Electronics Instrumentation & Control Engineering

Electronics Instrumentation & Control (EIC) Engineering is a specialized branch focusing on sensors, IoT, control, and automation. It plays a crucial role in Industry 4.0 and offers diverse career paths in fields like smart systems, biomedical, and industrial automation. The program at TIET boasts e

0 views • 13 slides



ADAS DRIVER TRAINING

In-cab devices in trucks include an ADAS camera and Driver Feedback Device (DFD) to alert drivers of unsafe conditions like short following, collisions, and lane departures. The DFD enables visual and audible alerts, with options to manually trigger events and adjust volume. Visual and audible alert

2 views • 8 slides


Detector Solenoid Design Overview and Status Update for EIC UG Meeting

Overview of the detector solenoid design presented by Renuka Rajput-Ghoshal from JLab at the EIC UG Meeting. The presentation covers the team members, collaboration process, timeline, and milestones achieved in the design and procurement phases.

0 views • 26 slides


Advanced Microbunched Electron Cooling for EIC Design Overview

Microbunched electron cooling is a cutting-edge technique proposed for the Electron-Ion Collider (EIC) design, aimed at enhancing beam properties through coherent electron interactions. The concept utilizes Coherent Electron Cooling (CeC) and broad-band amplification in the form of Micro-bunched Ele

0 views • 16 slides


Understanding Energy Transfer in Collisions

Exploring what happens to energy when objects collide, this lesson focuses on energy transfer through collisions using engaging models and investigations. Key science ideas such as the relationship between an object's speed and energy are examined, with a detailed analysis of energy movement before,

0 views • 13 slides


Understanding Vehicle Collisions: Causes, Types, and Injuries

Vehicle collisions involve various types such as front impacts, side impacts, and rear-end collisions, resulting in different injuries like back and head injuries, neck injuries, soft tissue damage, broken bones, and internal injuries. Understanding the causes and effects of collisions can help prev

0 views • 14 slides


Study on Collective Flow and Participant Eccentricity in High-energy Heavy-ion Collisions

Explore the research on collective behavior, eccentricity, and flow of final state particles in high-energy heavy-ion collisions. Learn about the measurement of Fourier coefficients, azimuthal angles, and spatial anisotropy, as well as the analysis of system size dependence and radial flow in variou

1 views • 29 slides


Event Structure and Color Reconnection in Heavy Ion Physics

Investigating event structures in proton-proton collisions sheds light on potential relevance for heavy ion physics, especially in understanding parton energy loss and hydrodynamic flow dynamics. The study discusses phenomena like color reconnection, underlying events in Pythia, and multiple-parton

1 views • 31 slides


Production in Collisions at 8-16 TeV: Analysis Overview

Detailed analysis overview of the production in collisions at 8-16 TeV incorporating contributions from Pavel Larionov (ITSsa), Paula Matuoka (TPC), Silvia Pisano (TPC), and Marco Toppi (TOF). The analysis involves the comparison of spectra data to previous datasets, emphasizing the importance of un

0 views • 50 slides


Insight into De-Confinement in High-Energy Nuclear Collisions

Explore the phenomena of de-confinement and clustering of color sources in nuclear collisions, revealing the transition to a state where quarks and gluons cannot be confined into color-neutral hadrons. This study delves into the relationship between percolation theory and de-confinement, shedding li

0 views • 34 slides


Open Heavy-Flavour Production in pp Collisions at the LHC - Physics Seminar Overview

Physics seminar presentation by Francesco Prino on open heavy-flavour production as a function of multiplicity in pp collisions at the Large Hadron Collider (LHC). The talk covers the motivation behind studying heavy-flavour production mechanisms, data analysis techniques, results on the multiplicit

0 views • 65 slides


Exploring Heavy-Ion Collisions at CERN LHC: ALICE Experiment Overview

Unveiling insights into heavy-ion collisions at CERN's Large Hadron Collider (LHC) through the ALICE experiment. Delving into the status, performance, and initial results, ALICE aims to characterize the medium formed during collisions. With a collaboration of around 1000 members from 31 countries an

0 views • 29 slides


Experimental Reconstruction of Primary Hot Fragment in Heavy Ion Collisions

Investigation into primary hot fragment reconstruction at Fermi energy heavy ion collisions, utilizing experimental data and simulations to reconstruct excitation energy, mass, and charge of primary fragments. Techniques like kinematical focusing and isotope identification were employed, with a focu

0 views • 36 slides


Insights into Quarkonium Production in Nuclear Collisions by Dhruv Dixit

Quarkonium mesons, such as Charmonium and Bottomonium, provide crucial information in understanding the effects of nuclear matter on their production in proton-nucleus collisions. These mesons, composed of quark-antiquark pairs, exhibit different behaviors in hot mediums, making them valuable probes

0 views • 11 slides


Understanding Elastic and Inelastic Collisions in Physics

Exploring the concepts of elastic and inelastic collisions, momentum, impulse, and energy conservation in physics. Topics include measuring speed, advantages of airbags, impact of catching objects, and understanding forces in collisions. Images and explanations demonstrate key principles in physics.

1 views • 25 slides


Understanding Linear Momentum and Collisions in Physics

Exploring the concepts of linear momentum, collisions, and conservation of energy in physics, this content covers topics such as momentum definition, conservation laws, impulse, types of collisions, and examples of perfectly inelastic and elastic collisions. It also includes a practical blackboard e

0 views • 17 slides


Correlated Head-Tail Instability in Beam-Beam Collisions

The study discusses the impact of the cross wake force and correlated head-tail instability in collisions with a large crossing angle. It delves into the mechanism of beam-beam instability, cross wake force induction, mode coupling, and particle tracking simulations. Design parameters and instabilit

0 views • 34 slides


Understanding Nucleon Structure: Insights from EIC Workshop

Exploring the mechanics of nucleons and the physics goals of the Electron-Ion Collider (EIC), this content delves into the origin of nucleon mass and spin, emergent properties of dense gluon systems, and energy-momentum tensor in QCD. It discusses the role of gluons in understanding nucleon structur

0 views • 31 slides


Closeout Report: Incremental Design Review of EIC Detector Electronics

Closeout report detailing the progress of the Incremental Preliminary Design and Safety Review of the EIC Detector DAQ and Electronics, along with the Final Design Review of Electronics Components for the ePIC Detector. The report includes responses to charge questions, panel reviews, comments, reco

0 views • 23 slides


Understanding Momentum and Collisions in Physics

Momentum plays a crucial role in analyzing collisions, where objects exert forces on each other over short time intervals. Conservation of momentum, following Newton's laws, allows predicting outcomes in collisions by redistributing momentum among objects. The concept is illustrated through examples

0 views • 25 slides


Comparison of ALOHA, Slotted ALOHA, and CSMA Protocols

ALOHA is a basic protocol where stations can transmit at any time, which leads to collisions. Slotted ALOHA organizes time into slots to reduce collisions and increase efficiency. CSMA uses carrier sensing to avoid collisions. Each protocol has its advantages and limitations in handling network traf

0 views • 17 slides


Understanding Momentum, Impulse, and Collisions in Physics

Learn about momentum, impulse, and collisions in Chapter 8 of physics. Understand how linear momentum, impulse, and the Impulse-Momentum theorem are crucial in analyzing collisions and conservation of momentum. Explore real-world applications in sports and scenarios like a child driving a bumper car

0 views • 19 slides


Fixed Point Collisions in Luttinger Semimetals and Field Theories

Exploring fixed point collisions and tensorial order parameters in Luttinger semimetals and various field theories, such as chiral symmetry breaking in QED and Interacting O(N) field theory. The research delves into the condensed matter motivation behind quadratic band touching and the Luttinger Ham

0 views • 39 slides


Introduction to Drude Model in Solid State Physics

Drude Model, formulated around 1900, explains the fundamental properties of metals such as electricity and heat. It proposes that electrons in metals behave like a classical electron gas, moving freely between atomic cores. The model considers the mean free path between electron collisions and estim

0 views • 39 slides


Insights into LHC Experimental Physics: Lecture Highlights and Challenges

Delve into the world of experimental physics at LHC with lectures by Jon Butterworth at University College London in September 2016. Topics covered include accelerators, detectors, principles, and digressions, along with discussions on triggers, multi-level trigger systems, and collision selection m

0 views • 26 slides


Momentum and Collisions Explained Through Illustrations

Explore various scenarios involving momentum, collisions, and elastic interactions through illustrated examples. Understand concepts such as total momentum in different situations, speeds of masses after collisions, momentum conservation in 1-D and 2-D collisions, and changes in momentum direction.

0 views • 28 slides


Exploring Quark-Gluon Plasma and New State of Matter at High Energy Colliders

Delve into the realm of high-energy physics at nucleus-nucleus colliders, with a focus on the discovery of deconfined partonic matter and the investigation of parallel worlds. Explore the recent insights, emerging topics, and new phenomena observed in ultra-intense collisions. Uncover the properties

0 views • 35 slides


Challenges and Considerations in Electron-Ion Collider Detector Development

Exploring the development of detector systems for Electron-Ion Colliders (EIC) involves addressing various issues such as detector acceptance for low Q2 and high Q2, unique beam characteristics, and the need for specialized components like bend magnets and polarimeters. Key considerations include po

0 views • 16 slides


EIC User Group Steering Committee Plans for Yellow Reports on Physics and Detector Concepts

The EIC User Group Steering Committee is focused on developing Yellow Reports to communicate important physics studies and detector concepts for the Electron-Ion Collider (EIC). These reports aim to advance experimental equipment concepts, complementarity of detectors, and provide input for future T

0 views • 9 slides


Communication Strategies and Reports for Advancing Physics Studies and Detector Concepts at EIC

CERN Yellow Reports provide a platform for sharing impactful work related to CERN, including reports on detectors, technical papers, and new activities. The goal is to advance physics studies and detector concepts in preparation for the EIC, focusing on quantifying physics measurements, implications

0 views • 10 slides


Update on ALICE ITS Upgrade Efforts at CERN

Kickoff meeting for the ALICE ITS Upgrade in LS3 was held at CERN on December 4, 2019. The efforts focus on silicon R&D for next-gen MAPS sensor with improvements, low X/X0 cylindrical vertex detection, and a new sensor design. Milestones, organization of efforts, and future plans towards an EIC sil

0 views • 6 slides


Quarkonium in Medium and Transport in Heavy-Ion Collisions

Discussing the properties and behavior of quarkonium in medium and its transport in heavy-ion collisions. Topics include heavy-quark potential, confinement, quarkonia at finite temperature, quarkonium transport, and quarkonia in heavy-ion collisions. Insightful details about in-medium potential and

0 views • 30 slides


Charm in Heavy Ion Collisions: Experimental Comparisons from SPS to LHC

Investigating charm suppression in heavy ion collisions at different energy levels, this study compares experimental data from SPS to LHC. Analysis suggests similar suppression at SPS and RHIC, with potential factors like recombination and direct J/ψ production influencing results. Uncertainties re

0 views • 16 slides


Physics Lab Experiment on Impulse and Collisions

This physics experiment involves measuring force vs. time during the collision of an air track glider with a force transducer to understand impulse. Proper setup of equipment is crucial to obtain accurate data. Through Capstone software, students analyze data to calculate impulse and understand the

0 views • 6 slides


Cryptographic Algorithms and Hash Collisions Overview

Explore the world of cryptographic algorithms and hash collisions. Learn about various hashing algorithms like MD5, SHA-1, SHA-256, and more. Dive into the concepts of symmetric and asymmetric key algorithms and understand the risks associated with hash collisions. Discover the implications of post-

0 views • 58 slides


LGAD Consortium for EIC: Advancing Detector Technologies

The LGAD Consortium aims to foster the development of detector technologies based on LGAD sensors for the Electron-Ion Collider (EIC) and future projects. By creating a collaborative effort, sharing expertise, and bringing together those interested in LGAD-based detectors, the consortium seeks to ad

0 views • 9 slides


Reconstruction of Nuclear Fragments in EIC e-A Collisions

Investigating nuclear fragment production in EIC e-A collisions through modeling scattering and decay processes using event generators like BeAGLE and FLUKA. Focus is on reconstructing pre-fragments based on nuclei and escaped nucleons, with detectors in far-forward regions aiding in trajectory and

0 views • 22 slides


Conservation of Momentum in Collisions: University of Ottawa Physics Lab

Study the conservation of linear momentum and energy in elastic and inelastic collisions in one dimension at the University of Ottawa's physics lab. Analyze the motion of gliders on an air track, observe changes in velocity, momentum, and energy, and compare position-time and velocity vs. time graph

0 views • 15 slides


Exploring Parton and Nucleon Interactions in Hadronic Collisions

Discussions at the GDR QCD workshop covered a range of topics from double parton scattering to coherent processes on nuclei, emphasizing the importance of understanding parton interactions in both proton-proton and heavy ion collisions. Theoretical frameworks such as DPS, SPS, GPDs, and TMDs were ex

0 views • 12 slides