Dna synthesis - PowerPoint PPT Presentation


Understanding DNA Mutations and Their Types

DNA mutations are changes in the DNA molecule that can lead to permanent alterations in the base sequence of daughter DNA. Causes include uncorrected errors, as well as damage from oxidative deamination, radiation, and chemicals. The types of mutations include point mutations, insertion mutations, d

4 views • 7 slides


Comprehensive DNA Characterization Methods in Molecular Biology

Explore the various techniques involved in the characterization of DNA, including spectrophotometric assay, melting temperature determination, quantitative and qualitative analyses, DNA purity assessment, GC content calculation, and DNA denaturation processes. Learn how to determine DNA concentratio

0 views • 12 slides



Understanding DNA Extraction from Strawberries in Molecular Genetics

In this molecular genetics lesson, students explore DNA extraction from strawberries. The content covers the structure of DNA, nucleotides, and the role of DNA in determining genetic information. Students learn about the components of nucleic acids, DNA functions, and the double helix structure of d

0 views • 87 slides


Preparation of Aspirin: Overview and Synthesis Methods

The preparation of aspirin involves the synthesis of 2-acetyl salicylic acid, known for its therapeutic uses as an analgesic, antipyretic, and anti-inflammatory agent. This process includes the detailed characteristics, stability, mechanism, and synthesis methods of aspirin. Important considerations

0 views • 12 slides


Understanding Animal Genetics: A Comprehensive Overview

Animal genetics is the study of heredity, inheritance of traits from parents to offspring, genetic material like DNA, chromosomes, genes, alleles, and nucleotides. It involves the understanding of chromosomes in different livestock species, DNA as the carrier of genetic information, genes as units o

0 views • 67 slides


Gel Electrophoresis DNA Extension Activity in Modern Biology Lab

This lab activity uses agarose gel electrophoresis to determine the length of an unknown DNA fragment by comparing it to known DNA fragment lengths. The process involves gel preparation, loading samples, electrophoresis, staining, de-staining, and measurement of DNA bands. The activity was produced

0 views • 7 slides


Understanding the Structure and Importance of DNA

Explore the essential components and structure of DNA, including nucleotides, RNA, and the significance of DNA in carrying genetic information across generations. Learn about the four DNA nucleotides, how mononucleotides are formed, and the discovery of DNA's structure. Dive into base pairing and th

0 views • 30 slides


Understanding the Relationship Between DNA and Protein Specificity

The relationship between an organism's DNA and protein specificity is intricate. DNA encodes the information for the sequence of amino acids in proteins, thereby determining their specificity. This process involves DNA directing the synthesis of specific RNA molecules, which are then translated into

0 views • 17 slides


TB ONT Workshop NIMR August 2022: Extracting TB DNA Insights

Dr. Linzy Elton, a postdoctoral research associate at the Centre for Clinical Microbiology, explores the importance of extracting high-quality TB DNA for sequencing. The workshop delves into the challenges of extracting DNA from TB due to its complicated cell wall and outlines the biological safety

0 views • 15 slides


Understanding DNA Ligation Techniques for Molecular Biology Applications

DNA ligation involves joining DNA fragments to vectors to create new DNA or plasmids. Methods include DNA ligase, T4 ligase, and terminal deoxynucleotidyl transferase. Linkers and adaptors play a key role in DNA cloning experiments by generating sticky ends for DNA cloning. The use of adaptors allow

1 views • 13 slides


Understanding DNA Replication Process: Insights and Mechanisms

DNA replication is a crucial biological process where identical copies of DNA molecules are produced for cell division. Initiated by specific proteins, it involves stages like initiation, elongation, and termination. Enzymes like helicases and DNA polymerase play key roles in forming replication for

0 views • 33 slides


Understanding DNA Probes and Fingerprinting in Animal Biotechnology

DNA probes play a crucial role in DNA fingerprinting, aiding in the detection of specific genetic sequences. Different types of probes, such as oligonucleotide, DNA, and cRNA probes, are utilized for various applications. Labeling methods, advantages, and disadvantages of hot and cold probes are dis

0 views • 22 slides


Understanding DNA Replication in Prokaryotes for B.Sc. Botany Hons. Students

Study material on DNA replication in prokaryotes focusing on key concepts like semiconservative mode of replication, involvement of enzymes, different models for understanding replication, and the bidirectional nature of DNA replication in prokaryotes. The material covers the process steps including

0 views • 33 slides


Lab 2: DNA Extraction Techniques for Arthropods and Wolbachia

In this lab activity, students will learn how to isolate genomic DNA from arthropods and Wolbachia bacteria. The goal is to transition from fieldwork to molecular biology, utilizing DNA as a diagnostic tool. The activity involves extracting total genomic DNA from identified species and includes pre-

0 views • 11 slides


Introduction to Phage DNA Integration in Bacterial Cells

Phage DNA can be introduced into bacterial cells through two methods: transfection and in vitro packaging. Transfection involves mixing purified phage DNA with competent E. coli cells, inducing DNA uptake via heat shock. In vitro packaging utilizes proteins coded by the phage genome, which can be pr

1 views • 13 slides


Pulsed-Field Gel Electrophoresis: Separating Large DNA Molecules

Pulsed-Field Gel Electrophoresis (PFGE) is a technique developed to effectively separate large DNA molecules through the application of an electric field that periodically changes direction. This method, introduced by David C. Schwartz and Charles C. Cantor in 1984, revolutionized the resolution of

1 views • 11 slides


Understanding DNA Sequencing: Principles, Applications, and Techniques

DNA sequencing plays a vital role in various fields such as research, diagnostics, biotechnology, forensics, and biological systematics. By determining the order of nucleotide bases in a DNA molecule, it helps in understanding genetic sequences, identifying mutations, and completing projects like th

0 views • 17 slides


Overview of Heme Synthesis and Porphyrias

Heme is a crucial component present in various essential proteins in the body, such as hemoglobin, myoglobin, and cytochromes. The synthesis of heme takes place in multiple steps involving different organelles and enzymes in the cell. Porphyrias are a group of disorders related to heme synthesis, ch

0 views • 44 slides


Understanding DNA Evidence in Solving Crimes

DNA, or deoxyribonucleic acid, plays a vital role in solving crimes by linking suspects to evidence, identifying victims, connecting crime scenes, and more. Factors like environmental conditions can affect DNA evidence. CODIS database aids in identifying suspects through DNA profiles. Understanding

0 views • 8 slides


Mechanism of Action of Antifolate Drugs in Bacterial Synthesis

Folate-derived cofactors are crucial for cell growth, with bacteria relying on de novo synthesis while humans need preformed folate. Antifolates like sulfonamides and trimethoprim disrupt folate synthesis in bacteria, inhibiting DNA synthesis. This article explores how these drugs target bacterial e

0 views • 34 slides


Understanding Epigenetics: DNA Methylation and Histone Modification

Epigenetics refers to changes in gene expression without altering the DNA sequence. This involves processes like DNA methylation, histone modification, and microRNAs. DNA methylation is controlled by DNA methyltransferase enzymes and plays crucial roles in gene activation and silencing. Histone modi

0 views • 13 slides


Understanding Recombinant DNA Technology and Gene Cloning

Recombinant DNA technology is crucial for developing new vaccines and pharmaceuticals by combining genetic material from various sources to create unique sequences. Techniques like transformation, non-bacterial transformation, and phage introduction are used to make recombinant DNA. Tools like enzym

3 views • 15 slides


Understanding DNA Profiling: Techniques and Applications

DNA profiling, invented by Alec Jeffreys in 1985, is a technique used to distinguish between individuals of the same species based on their DNA. The process involves breaking down cells to release DNA, cutting the DNA into fragments using restriction enzymes, separating and analyzing fragments based

11 views • 23 slides


DNA Extraction: A User's Manual for Plant Material

A step-by-step guide on preparing, extracting, and storing DNA from plant material for first-time users, specifically tailored for individuals in botanical fields. The manual covers materials needed, CTAB buffer mixture preparation, leaf material preparation, DNA extraction process, and proper stora

0 views • 8 slides


SAT-Based Exact Synthesis Using DAG Topology Families

Explore the world of exact synthesis in digital circuit design utilizing SAT solvers to achieve precise results. Understand the challenges, decision problems, algorithms, motivation behind exact synthesis, and the contribution of SAT solvers in mitigating runtime. Discover the concept of DAG topolog

0 views • 17 slides


Understanding DNA: A Journey from Friedrich Miescher to Genes and Function

DNA, the hereditary basis of life, was first discovered by Friedrich Miescher in 1869. It consists of chromosomes, plasmids, and organellar DNA, collectively known as the genome. Genes, sequences of DNA, encode proteins and RNA, essential for an organism's functions. The genome is divided into chrom

0 views • 17 slides


Understanding DNA, Chromosomes, and Chromatin Structure

DNA is made up of genes, chromosomes, and chromatin. Genes carry vital information for protein synthesis, while chromosomes are condensed DNA required for cell division. Junk DNA are non-coding regions, and sister chromatids are identical DNA copies. Homologous chromosomes have matching structures,

1 views • 17 slides


Insights into Biological Synthesis Techniques and Related Work

Explore the biological synthesis project by Sumay and Sumit Gulwani at MSR Redmond. The project delves into template-based approaches and safety considerations in artifact synthesis. The outline covers inductive synthesis, challenges, and successes in achieving synthesis goals. Discover unique namin

0 views • 15 slides


DNA Data Archival: Solving Read Consensus Using OneJoin Algorithm

DNA data storage presents challenges in archiving digital information efficiently due to the nature of biological media. This article delves into the complexities of DNA data storage, emphasizing the importance of robust archival solutions. The OneJoin algorithm offers a scalable and cross-architect

0 views • 8 slides


DNA Extraction from Fruit Lab: Strawberry Extraction Method

Explore the fascinating process of breaking cell barriers and extracting DNA from strawberry cells. This comprehensive lab guide provides detailed instructions on how to extract DNA using simple materials like strawberries, plastic bags, ethanol, liquid detergent, and more. From mashing the fruit to

0 views • 11 slides


Understanding Recombinant DNA and Gene Cloning

Recombinant DNA is artificially created by combining DNA from multiple sources into a single molecule. This process involves treating DNA with restriction endonucleases, such as BamHI, which cut at specific sites, resulting in sticky ends that can base pair with complementary DNA molecules. DNA liga

0 views • 33 slides


Fluorescent DNA Nanotags: Advancements in Multiplex Biomolecule Labeling

This content explores the development and applications of fluorescent DNA nanotags for fast signal acquisition and high sensitivity in biomolecule labeling. The use of DNA scaffolds allows for precise positioning of fluorophores, enabling fine-tuning of emission wavelengths and efficient energy tran

0 views • 24 slides


DNA Discovery and Structure Milestones

In the fascinating journey of understanding DNA, key discoveries by scientists such as Johann Miescher, Frederick Griffith, and Oswald Avery paved the way for grasping DNA's role as the genetic material. The discovery of DNA's structure as the blueprint for living organisms, composed of nucleotides

0 views • 28 slides


Understanding Transcription and Translation in Protein Synthesis

Protein structure is composed of amino acids arranged in specific orders to form polypeptides. This process involves transcription of DNA into RNA followed by translation of RNA into proteins. Replication plays a crucial role in preparing DNA for cell division. The central dogma of molecular biology

0 views • 24 slides


Understanding Transcription and Gene Expression in Biology

Explore the intricate process of transcription in biology, where mRNA is synthesized from DNA to carry the genetic code for protein production. Learn about the connection between genotype and phenotype, the role of genes in protein synthesis, and the significance of terms such as RNA Polymerase, int

0 views • 16 slides


Understanding DNA Transcription and Translation in Biology

DNA transcription is the process where DNA is used as a template to create mRNA in the nucleus. This mRNA is complementary to the DNA and goes through initiation, elongation, and termination stages. RNA polymerases are essential for this process in eukaryotes. Various RNA polymerases have specific f

0 views • 47 slides


Understanding Transcription: The Initial Steps in Gene Expression

Gene expression involves two crucial phases - transcription and translation. Transcription, the first step, is the process where RNA is synthesized from DNA with the help of RNA polymerase. It begins with initiation, where the enzyme recognizes the promoter region and forms a complex with the DNA, m

0 views • 33 slides


Understanding Transcription in Biochemistry

Transcription is a crucial process where RNA is synthesized from DNA, involving complex steps of initiation, elongation, and termination. This process is regulated by specific DNA regions, proteins, and enzymes like DNA-dependent RNA polymerase. The differences between DNA and RNA synthesis lie in t

0 views • 15 slides


Understanding Gene Function and Expression in Molecular Genetics

Investigating gene function and expression is crucial in molecular genetics. Key discoveries by pioneers like Archibald Garrod, George Beadle, Edward Tatum, Linus Pauling, and Vernon Ingram have shed light on how genes are responsible for enzyme synthesis, polypeptide specification, and protein synt

0 views • 29 slides


Understanding Sanger DNA Sequencing Procedure

Overview of Sanger (dideoxy) DNA sequencing, involving deoxynucleotides and dye-labeled dideoxynucleotides to image DNA band sizes. The simulation model includes steps like denaturing DNA, annealing primers, and synthesizing DNA chains using dNTPs and ddNTPs. The process culminates in electrophoresi

0 views • 7 slides