Approximation techniques - PowerPoint PPT Presentation


Understanding Interpolation and Pulse Shaping in Real-Time Digital Signal Processing

Discrete-to-continuous conversion, interpolation, pulse shaping techniques, and data conversion in real-time digital signal processing are discussed in this content. Topics include types of pulse shapes, sampling, continuous signal approximation, interpolation methods, and data conversion processes

4 views • 14 slides


Enhancing Scalability and Performance in Deep Recommendation Systems with EVStore

EVStore presents a novel approach to scaling embedding tables in deep recommendation systems, offering a three-layer caching system that optimizes storage and caching capabilities. By leveraging groupability-aware caching, mixed-precision caching, and embedding approximation, EVStore achieves lighte

3 views • 33 slides



Exploring Business Valuation Expectations

This is an informal ballpark estimate or value approximation done quickly with minimal\nanalysis. Business sale brokers may provide these types of rough calculations when\nmarketing businesses for sale.

5 views • 5 slides


Harmonisation of Substantive Criminal Law in the EU

The Treaty of Lisbon serves as a legal foundation for the harmonisation of substantive criminal law within the European Union. It establishes the basis for judicial cooperation, mutual recognition of judgments, and approximation of laws across Member States. The treaty allows for the establishment o

1 views • 60 slides


Mammalian Dentition and Tooth Structure Exploration

Understanding dentition in mammals sheds light on their evolution, classification, age approximation, and dietary habits. The arrangement of teeth, tooth structure, development, and types of mammalian teeth are discussed, highlighting unique features like thecodont attachment, enamel coating, and de

2 views • 16 slides


Optimization Techniques for Minimization Problems

Explore various minimization problems, from easy to insanely hard, and learn about finding global and local optima using approaches like bisection, Newton's method, and rationalization. Discover efficient methods such as the golden section and iterative approximation with Newton's method for optimiz

0 views • 17 slides


Understanding Approximation Algorithms: Types, Terminology, and Performance Ratios

Approximation algorithms aim to find near-optimal solutions for optimization problems, with the performance ratio indicating how close the algorithm's solution is to the optimal solution. The terminology used in approximation algorithms includes P (optimization problem), C (approximation algorithm),

2 views • 10 slides


Understanding Multidimensional Scaling and Unsupervised Learning Methods

Multidimensional scaling (MDS) aims to represent similarity or dissimilarity measurements between objects as distances in a lower-dimensional space. Principal Coordinates Analysis (PCoA) and other unsupervised learning methods like PCA are used to preserve distances between observations in multivari

0 views • 21 slides


Understanding Particle-on-a-Ring Approximation in Chemistry

Delve into the fascinating world of the particle-on-a-ring approximation in chemistry, exploring concepts like quantum quantization of energy levels, De Broglie approach, Schrödinger equation, and its relevance to the electronic structure of molecules. Discover how confining particles to a ring lea

0 views • 23 slides


Primal-Dual Algorithms for Node-Weighted Network Design in Planar Graphs

This research explores primal-dual algorithms for node-weighted network design in planar graphs, focusing on feedback vertex set problems, flavors and toppings of FVS, FVS in general graphs, and FVS in planar graphs. The study delves into NP-hard problems, approximation algorithms, and previous rela

0 views • 17 slides


Understanding Synthetic Aperture Radar (SAR) Modes and Implementations

Explore the world of Synthetic Aperture Radar (SAR) through various modes and implementations, covering topics such as SAR coordinate systems, pulse compression, range-Doppler algorithms, Born approximation, SAR scene simulation, and more. Dive into the distinctions between unfocused SAR and focused

0 views • 18 slides


Batch Reinforcement Learning: Overview and Applications

Batch reinforcement learning decouples data collection and optimization, making it data-efficient and stable. It is contrasted with online reinforcement learning, highlighting the benefits of using a fixed set of experience to optimize policies. Applications of batch RL include medical treatment opt

2 views • 47 slides


3D Human Pose Estimation Using HG-RCNN and Weak-Perspective Projection

This project focuses on multi-person 3D human pose estimation from monocular images using advanced techniques like HG-RCNN for 2D heatmaps estimation and a shallow 3D pose module for lifting keypoints to 3D space. The approach leverages weak-perspective projection assumptions for global pose approxi

0 views • 8 slides


Development of Learning Techniques in Automation Control Systems

Development of Learning Techniques in Automation Control Systems at the National Technical University of Athens focuses on system identification, parameter approximation, and achieving control goals using statistical methods and mathematical models. Techniques such as open loop form, closed loop for

0 views • 18 slides


Transportation Problem in Operations Research: Methods and Examples

This content explains the Transportation Problem in Operations Research, focusing on minimizing distribution costs while meeting supply and demand requirements. It covers the objective, methods including North West Corner, Least Cost, and Vogel Approximation, and provides an example scenario with ca

0 views • 21 slides


Nuclear Physics Research Highlights: Neutron Stars, Nuclear EOS, and Pb Isotope Studies

Explore cutting-edge research in nuclear physics, including experiments on pion ratios and Pb isotope radius measurements, neutron star observations, neutron density distributions of Pb isotopes, and polarized proton beams at Osaka University. Learn about the analysis of realistic point proton densi

0 views • 26 slides


Efficient Bounding Plane Approximation Techniques in Computer Graphics

Discover advanced techniques for quickly finding optimal bounding planes with specific orientations in computer graphics applications such as ray tracing, world-space optimization, view frustum culling, and shadow mapping. Learn how to improve efficiency and precision in bounding volume hierarchy co

0 views • 28 slides


Forensic Anthropology and Missing Persons Investigation

The investigation into missing persons using forensic anthropology techniques, focusing on the analysis of bones like the humerus for height approximation and identification. Families await closure as the FBI looks into washed ashore bones, potentially bringing answers and resolving insurance claims

0 views • 13 slides


Understanding Temporal and Spatial Information Models

This content delves into the intricacies of temporal and spatial information models, covering concepts such as existence, presence, and spatiotemporal relationships. It explores how entities are identified, events are witnessed, and durations are defined within these models. The interplay between ti

3 views • 9 slides


Insights into Advanced Algorithmic Problems

Delve into discussions surrounding complex algorithmic challenges, such as the limitations in solving the 3-SAT problem within specific time bounds, the Exponential Time Hypothesis, proving lower bounds for algorithms in various scenarios, and exploring approximation ratios in algorithm design. Thes

1 views • 65 slides


Governing Equations and Model Reduction in Continuous Stratified Models

Detailed analysis of the governing equations in a continuous stratified model with vertical mode decomposition and Sturm-Liouville problem. The density perturbation and pressure perturbation are examined to derive a reduced 3D system. The Boussinesq approximation and hydrostatic balance are applied,

0 views • 36 slides


Understanding Degenerate Perturbation Theory in Quantum Mechanics

Exploring time-independent perturbation theory, specifically focusing on non-degenerate and degenerate spectra. The lecture covers approximation schemes, treatment of multi-electron atom term values, and the effects of spin-orbit interaction. Concepts include evaluating expectation values, wavefunct

0 views • 13 slides


Understanding Electron-Phonon Interactions in Iron-Based Superconductors

This discussion explores the effects of electron-phonon interactions on orbital fluctuations in iron-based superconductors. Topics covered include ab initio downfolding for electron-phonon coupled systems, evaluation methods such as Constrained Random Phase Approximation (cRPA), Constrained Density-

0 views • 12 slides


Understanding Low Threshold Rank Graphs and Their Structural Properties

Explore the intriguing world of low threshold rank graphs and their structural properties, including spectral graph theory, Cheeger's inequality, and generalizations to higher eigenvalues. Learn about the concept of threshold rank, partitioning of graphs, diameter limits, and eigenvectors approximat

0 views • 22 slides


Learning-Based Low-Rank Approximations and Linear Sketches

Exploring learning-based low-rank approximations and linear sketches in matrices, including techniques like dimensionality reduction, regression, and streaming algorithms. Discusses the use of random matrices, sparse matrices, and the concept of low-rank approximation through singular value decompos

0 views • 13 slides


Improved Approximation for the Directed Spanner Problem

Grigory Yaroslavtsev and collaborators present an improved approximation for the Directed Spanner Problem, exploring the concept of k-Spanner in directed graphs. The research delves into finding the sparsest k-spanner, preserving distances and discussing applications, including simulating synchroniz

0 views • 20 slides


Notch Approximation for Low-Cycle Fatigue Analysis in Structural Components

Structural components subjected to multi-axial cyclic loading can be analyzed for low-cycle fatigue using notch approximation. By transforming elastic response into an elastoplastic state, the computation time is reduced, and fatigue evaluation is done based on the Smith-Watson-Topper model. Strain-

0 views • 4 slides


Functional Approximation Using Gaussian Basis Functions for Dimensionality Reduction

This paper proposes a method for dimensionality reduction based on functional approximation using Gaussian basis functions. Nonlinear Gauss weights are utilized to train a least squares support vector machine (LS-SVM) model, with further variable selection using forward-backward methodology. The met

0 views • 23 slides


Comprehensive Course Overview on Algorithm Analysis and Design

Explore a detailed syllabus covering mathematical foundations, complexity calculations, asymptotic analysis, dynamic programming, traversal techniques, and more. Dive into key concepts like recursion, divide and conquer, greedy algorithms, backtracking, and approximation algorithms. Gain insights in

1 views • 11 slides


Approximation Algorithms for Stochastic Optimization: An Overview

This piece discusses approximation algorithms for stochastic optimization problems, focusing on modeling uncertainty in inputs, adapting to stochastic predictions, and exploring different optimization themes. It covers topics such as weakening the adversary in online stochastic optimization, two-sta

0 views • 33 slides


Advanced Techniques in Contention Resolution Schemes

Explore the cutting-edge approaches in contention resolution schemes through submodular function maximization, multilinear relaxation, and stochastic probing. Understand constraints and relaxations involved, with a focus on balanced CRSs and approximation algorithms for maximizing weight functions.

0 views • 37 slides


Advanced NLP Modeling Techniques: Approximation-aware Training

Push beyond traditional NLP models like logistic regression and PCFG with approximation-aware training. Explore factor graphs, BP algorithm, and fancier models to improve predictions. Learn how to tweak algorithms, tune parameters, and build custom models for machine learning in NLP.

0 views • 49 slides


ACCEPT: A Programmer-Guided Compiler Framework for Practical Approximate Computing

ACCEPT is an Approximate C Compiler framework that allows programmers to designate which parts of the code can be approximated for energy and performance trade-offs. It automatically determines the best approximation parameters, identifies safe approximation areas, and can utilize FPGA for hardware

0 views • 15 slides


Regret-Bounded Vehicle Routing Approximation Algorithms

Regret-bounded vehicle routing problems aim to minimize client delays by considering client-centric views and bounded client regret measures. This involves measuring waiting times relative to shortest-path distances from the starting depot. Additive and multiplicative regret measures are used to add

0 views • 28 slides


Approximation Algorithms for Regret-Bounded Vehicle Routing

This research explores regret-bounded vehicle routing problems (VRPs) where the focus is on minimizing client delays based on their distances from the starting depot. The study introduces a client-centric view to measure regret and devises algorithms for both additive and multiplicative regret-based

0 views • 23 slides


Enhancing Processor Performance Through Rollback-Free Value Prediction

Mitigating memory and bandwidth walls, this research extends rollback-free value prediction to GPUs, achieving up to 2x improvement in energy and performance while maintaining 10% quality degradation. Utilizing microarchitecturally-triggered approximation to predict missed loads, this work focuses o

0 views • 7 slides


LP-Based Algorithms for Capacitated Facility Location

This research presents LP-Based Algorithms for the Capacitated Facility Location problem, aiming to choose facilities to open and assign clients to these facilities efficiently. It discusses solving the problem using metric costs, client and facility sets, capacities, and opening costs. The research

0 views • 36 slides


Iterative Root Approximation Using Natural Logarithm

The content covers iterative root approximation using natural logarithm in solving equations. It explores finding roots by iterative formulas and demonstrates calculations to reach approximate values. The process involves selecting intervals to show correct values and ensuring continuity for accurat

0 views • 14 slides


Hierarchy-Based Algorithms for Minimizing Makespan under Precedence and Communication Constraints

This research discusses hierarchy-based algorithms for minimizing makespan in scheduling problems with precedence and communication constraints. Various approximation techniques, open questions in scheduling theory, and QPTAS for different settings are explored, including the possibility of beating

0 views • 25 slides


Insights into Theoretical Approaches in NMR Spectroscopy

Theoretical approaches in NMR spectroscopy encompass diverse methods, each with varying degrees of approximation but yielding correct results within their validity. Techniques such as transition probabilities using the time-dependent perturbation theory, Zeeman interaction for energy level transitio

0 views • 32 slides