Satellite Data Assimilation: Enhancing Weather Forecast Accuracy

 
 
02/28/2020
 
S
u
m
m
a
r
y
 
o
f
 
 
t
h
e
 
N
W
P
/
D
a
t
a
 
A
s
s
i
m
i
l
a
t
i
o
n
I
I
:
 
G
e
o
p
h
y
s
i
c
a
l
 
P
a
r
a
m
e
t
e
r
s
 
P
a
n
e
l
 
Moderator: Nazmi Chowdhury
Users: Amanda Back, Jim Yoe, Ed Hyer
Developers: Kyle Hilburn, Xuguang Wang, Haixia Liu
 
 
K
e
y
 
T
a
k
e
a
w
a
y
s
 
Assimilating more (sat) obs is better for more accurate NWP
More useful forecast products at Centers, WFOs, RFCs
Improved Decision Support to government agencies, individual citizens, and everyone in between
Users look for NRT products while choosing satellite data products for DA.
Information into the model is a function of ability to resolve uncertainty– data
assimilation must always “assume the worst” about the observations!
Resolution and uncertainty trade off for many types of retrieval– who will manage that
tradeoff (developer or user)?
For Aerosol Modeling Daily mean matters most.
High resolution ABI observations can be complementary to radar observations and if
assimilated can add lead time to NWP of rapidly developing storms.
Ozone observations from satellite instruments are important to constraint the ozone
field in global model
 
 
 
K
e
y
 
C
h
a
l
l
e
n
g
e
s
 
f
o
r
 
U
s
e
r
s
 
Q
u
a
l
i
t
y
/
b
i
a
s
 
c
o
r
r
e
c
t
i
o
n
:
Expensive to develop their own bias correction, Reliability of QC
R
e
s
o
u
r
c
e
s
 
(
c
o
m
p
u
t
e
r
 
t
i
m
e
 
a
n
d
 
p
e
o
p
l
e
)
 
n
e
e
d
e
d
 
t
o
 
t
e
s
t
 
p
r
o
d
u
c
t
s
.
DA Development and Testing requires even more HPC
V
e
r
t
i
c
a
l
 
I
n
f
o
 
f
o
r
 
S
a
t
e
l
l
i
t
e
 
P
r
o
d
u
c
t
s
:
Many satellite products are 2D, Model fields are 3D
C
e
n
t
r
a
l
i
z
e
d
 
l
o
c
a
t
i
o
n
 
t
o
 
s
h
a
r
e
 
n
e
w
 
p
r
o
d
u
c
t
s
;
 
n
o
t
 
a
d
 
h
o
c
L
a
n
d
/
S
e
a
 
S
u
r
f
a
c
e
Need high-res, real-time
T
o
o
l
s
 
n
e
e
d
e
d
 
s
p
e
c
i
a
l
l
y
 
f
o
r
 
G
l
o
b
a
l
 
M
o
d
e
l
 
a
s
s
e
s
s
m
e
n
t
.
O2R is NOT sufficient for achieving R2O
Obs, DA, & Model compete for implementation
Acceleration on the research side but no complementary acceleration on operational
implementation.
 
 
 
 
 
 
K
e
y
 
C
h
a
l
l
e
n
g
e
s
 
f
o
r
 
D
e
v
e
l
o
p
e
r
s
 
Data assimilation Algorithms: becoming more complex and application dependent
U
t
i
l
i
z
i
n
g
 
o
b
s
e
r
v
a
t
i
o
n
s
 
p
r
e
s
e
n
t
s
 
c
h
a
l
l
e
n
g
e
s
 
a
s
 
d
a
t
a
 
i
s
 
g
e
t
t
i
n
g
 
b
i
g
g
e
r
 
a
n
d
 
b
i
g
g
e
r
-
B
i
g
D
a
t
a
.
Bias (model and obs.) correction
QC during DA
Observation error estimation (operator error, representativeness error, etc.)
Effective assimilation of multiple channels.
Lack of independent ozone sounding data for validation.
 
 
 
I
d
e
a
s
 
t
o
 
I
m
p
r
o
v
e
 
U
s
e
r
 
E
x
p
e
r
i
e
n
c
e
 
Improve bias correction and QC at the developer level.
Increased resources for High Performance Computing.
Consider cloud computing for Big Data.
Use of Direct Broadcast data in cases of need for NRT data.
Better planning for operational implementation for successful R2O.
 
Slide Note
Embed
Share

Assimilating satellite observations into Numerical Weather Prediction models improves forecast accuracy and provides valuable information for various users. Key takeaways include the benefits of incorporating more satellite data, enhancing decision support for government agencies and citizens, and the importance of managing the trade-off between resolution and uncertainty. Challenges for users include quality correction costs, reliability of quality control resources, and the need for high-resolution, real-time tools for global model assessment.


Uploaded on Oct 10, 2024 | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. Download presentation by click this link. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

E N D

Presentation Transcript


  1. C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-10.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-10.png Summary of the NWP/Data Assimilation II: Geophysical Parameters Panel C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-08.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-08.png Moderator: Nazmi Chowdhury Users: Amanda Back, Jim Yoe, Ed Hyer Developers: Kyle Hilburn, Xuguang Wang, Haixia Liu C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-07.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-07.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-06.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-06.png 02/28/2020 C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-05.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-05.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-04.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-04.png G:\STALL\ST Comms\Templates Resources\Logos\Other Emblems\DOC Logo\DOC Color.png Department of Commerce // National Oceanic and Atmospheric Administration // 1

  2. C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-10.png Key Takeaways Assimilating more (sat) obs is better for more accurate NWP More useful forecast products at Centers, WFOs, RFCs Improved Decision Support to government agencies, individual citizens, and everyone in between Users look for NRT products while choosing satellite data products for DA. Information into the model is a function of ability to resolve uncertainty data assimilation must always assume the worst about the observations! Resolution and uncertainty trade off for many types of retrieval who will manage that tradeoff (developer or user)? For Aerosol Modeling Daily mean matters most. High resolution ABI observations can be complementary to radar observations and if assimilated can add lead time to NWP of rapidly developing storms. Ozone observations from satellite instruments are important to constraint the ozone field in global model C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-08.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-07.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-06.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-05.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-04.png G:\STALL\ST Comms\Templates Resources\Logos\Other Emblems\DOC Logo\DOC Color.png Department of Commerce // National Oceanic and Atmospheric Administration // 2

  3. C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-10.png Key Challenges for Users Quality/bias correction: Expensive to develop their own bias correction, Reliability of QC Resources (computer time and people) needed to test products. DA Development and Testing requires even more HPC Vertical Info for Satellite Products: Many satellite products are 2D, Model fields are 3D Centralized location to share new products; not ad hoc Land/Sea Surface Need high-res, real-time Tools needed specially for Global Model assessment. O2R is NOT sufficient for achieving R2O Obs, DA, & Model compete for implementation Acceleration on the research side but no complementary acceleration on operational implementation. C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-08.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-07.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-06.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-05.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-04.png G:\STALL\ST Comms\Templates Resources\Logos\Other Emblems\DOC Logo\DOC Color.png Department of Commerce // National Oceanic and Atmospheric Administration // 3

  4. C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-10.png Key Challenges for Developers Data assimilation Algorithms: becoming more complex and application dependent Utilizing observations presents challenges as data is getting bigger and bigger-Big Data. Bias (model and obs.) correction QC during DA Observation error estimation (operator error, representativeness error, etc.) Effective assimilation of multiple channels. Lack of independent ozone sounding data for validation. C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-08.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-07.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-06.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-05.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-04.png G:\STALL\ST Comms\Templates Resources\Logos\Other Emblems\DOC Logo\DOC Color.png Department of Commerce // National Oceanic and Atmospheric Administration // 4

  5. C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-10.png Ideas to Improve User Experience Improve bias correction and QC at the developer level. Increased resources for High Performance Computing. Consider cloud computing for Big Data. Use of Direct Broadcast data in cases of need for NRT data. Better planning for operational implementation for successful R2O. C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-08.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-07.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-06.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-05.png C:\Users\jacqui.fenner\Desktop\PTT templates\images\noaa icons\noaa_icons-04.png G:\STALL\ST Comms\Templates Resources\Logos\Other Emblems\DOC Logo\DOC Color.png Department of Commerce // National Oceanic and Atmospheric Administration // 5

Related


More Related Content

giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#