Utilizing and Sharing Data in the COVID-19 Crisis

T
h
e
 
n
e
e
d
 
f
o
r
,
 
a
n
d
 
v
a
l
u
e
 
o
f
,
u
s
i
n
g
 
a
n
d
 
s
h
a
r
i
n
g
 
d
a
t
a
 
w
i
t
h
i
n
t
h
e
 
C
O
V
I
D
-
1
9
 
c
r
i
s
i
s
Prof. Dr. Niel Hens
Acknowledgements: Sciensano, 
EpiPose
consortium
Funding: H2020 EpiPose project; ERC
Consolidator grant TransMID; FWO
COVID-19 projects
1
Open Access Week @UHasselt
Infectious disease data
Difficulties
interdepencies
incomplete data
Observational studies 
bias
association not causation
Scientific principles
conjecture versus refutation
Bradford Hill criteria – confidence
 Robert Koch & microbiology
Becker (1989)
Held et al. (2019)
2
The Belgian COVID-19 pandemic
First 
wave
Early
May
Early
June
3
Late
October
Data collected by Sciensano:
(open data after criticism in the media)
Confirmed cases data
Hospital data
Data about deaths
Federal task force: Data Against Corona:
Barometer data
Mobile phone data
Weather data
Absenteism data
International open data initiatives
Open data initiatives on incidence etc
John Hopkins (
https://coronavirus.jhu.edu/map.html
)
Our world in data (
https://ourworldindata.org/
)
Data from transmission clusters
superspreading events
: google spreadsheet
transmission data
: Singapore, Tianjin (China), …
Data interventions
Oxford government response tracker
4
Estimating the generation interval for COVID-19 based on
symptom onset data
Tapiwa Ganyani, Cécile Kremer, Dongxuan Chen, Andrea Torneri, Christel Faes, Jacco Wallinga, and
Niel Hens
Kremer et al. (2020): letter to editor to clarify issues with estimating the generation interval as
raised by Bacallado et al. (2020)
 
Hui-Xian et al. (in revision): analysis of Singapore data from Jan - April 2020
 
Torneri et al. (in revision): biased estiamtes in case of intervention measures
Publication:
Ganyani Tapiwa
, 
Kremer Cécile
, 
Chen Dongxuan
, 
Torneri Andrea
, 
Faes Christel
, 
Wallinga Jacco
, 
Hens Niel
. Estimating the generation interval for
coronavirus disease (COVID-19) based on symptom onset data, March 2020. 
Euro Surveill.
 2020;25(17):pii=2000257. 
https://doi.org/10.2807/1560-
7917.ES.2020.25.17.2000257
Own data collection initiatives
Social contact data 
collection initiative (ERC TransMID)
Large Corona Study 
(U
A
ntwerpen – U
H
asselt – KU Leuven – ULB)
CoMIX study
 (H2020 EpiPose)
Serological data 
collections (Handgift U
A
ntwerpen)
6
SOCRATES: An online tool leveraging a social contact data
sharing initiative to assess mitigation strategies for COVID-19
Lander Willem, Thang Van Hoang, Sebastian Funk, Pietro Coletti, Philippe Beutels, Niel Hens 
Publication:
Medrxiv & BMC Research Notes (2020)
www.socialcontactdata.org
 
www.socialcontactdata.org
 
www.socialcontactdata.org
 
CoMix: comparing mixing patterns in the Belgian population
during and after lockdown
Pietro Coletti, James Wambua, Amy Gimma, 
Lander Willem, Sarah Vercruysse, Bieke Vanhoutte,
Christopher I Jarvis, 
 
Kevin van Zandvoort, John Edmunds,
 Philippe Beutels, Niel Hens
Publication:
Medrxiv & In revision (2020)
www.socialcontactdata.org
 
Timing
All:
Design and analysis of SARS-CoV-2 serological surveys
Sereina Herzog, Steven Abrams, Niel Hens
Ine Wouters, Jessie De Bie, Esra Ekinci, Heidi Theeten, Pierre Van Damme
Publication:
Medrxiv & In revision (2020)
S
e
r
o
s
u
r
v
e
y
 
S
A
R
S
-
C
o
V
-
2
 
a
i
m
 
&
 
p
l
a
n
n
i
n
g
A
i
m
:
 
E
s
t
i
m
a
t
i
n
g
 
s
e
r
o
p
r
e
v
a
l
e
n
c
e
 
o
f
 
C
O
V
I
D
-
1
9
 
i
n
 
B
e
l
g
i
u
m
 
f
r
o
m
 
r
e
s
i
d
u
a
l
 
s
e
r
a
c
o
l
l
e
c
t
e
d
 
d
u
r
i
n
g
 
r
o
u
t
i
n
e
 
l
a
b
o
r
a
t
o
r
y
 
t
e
s
t
i
n
g
C
o
l
l
e
c
t
i
o
n
s
:
 
S
e
r
o
s
u
r
v
e
y
 
S
A
R
S
-
C
o
V
-
2
 
r
e
s
u
l
t
s
Figure legend
Weighted seroprevalence (A, B, C)
Weighted seroincidence (D, E, F)
- overall (panel A+D),
- by 10-year age bands (panel B+E), 
- by gender (panel D+F)
(updated 28.09.2020)
Closing remarks
Discussion
Open data
On 
preprints
Open software
Ethics & privacy
Conclusion
Extremely valuable
Need to remove hurdles or
expedite processes 
in a crisis
New initiative
I
nfectieradar.be
16
Slide Note
Embed
Share

Exploring the significance of data utilization and sharing during the COVID-19 crisis, this content discusses infectious disease data, the Belgian pandemic, international open data initiatives, estimating COVID-19 generation intervals, and various data collection initiatives. The narrative sheds light on the value of data in understanding and combating the pandemic.

  • COVID-19 crisis
  • Data sharing
  • Infectious diseases
  • Data collection
  • Pandemic management

Uploaded on Oct 05, 2024 | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. Download presentation by click this link. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

E N D

Presentation Transcript


  1. The need for, and value of, using and sharing data within the COVID-19 crisis Prof. Dr. Niel Hens Acknowledgements: Sciensano, EpiPose consortium Funding: H2020 EpiPose project; ERC Consolidator grant TransMID; FWO COVID-19 projects Open Access Week @UHasselt 1

  2. Infectious disease data Difficulties interdepencies incomplete data Observational studies bias association not causation Scientific principles conjecture versus refutation Bradford Hill criteria confidence Robert Koch & microbiology Held et al. (2019) 2 Becker (1989)

  3. The Belgian COVID-19 pandemic Data collected by Sciensano: (open data after criticism in the media) Confirmed cases data Hospital data Data about deaths Deaths First wave Severe cases (hospitalized) Early May Late October Early June Federal task force: Data Against Corona: Barometer data Mobile phone data Weather data Absenteism data Mild cases Asymptomatic / pre- symptomatic (PCR+ only, detected) 3

  4. International open data initiatives Open data initiatives on incidence etc John Hopkins (https://coronavirus.jhu.edu/map.html) Our world in data (https://ourworldindata.org/) Data from transmission clusters superspreading events: google spreadsheet transmission data: Singapore, Tianjin (China), Data interventions Oxford government response tracker 4

  5. Estimating the generation interval for COVID-19 based on symptom onset data Tapiwa Ganyani, C cile Kremer, Dongxuan Chen, Andrea Torneri, Christel Faes, Jacco Wallinga, and Niel Hens Kremer et al. (2020): letter to editor to clarify issues with estimating the generation interval as raised by Bacallado et al. (2020) Hui-Xian et al. (in revision): analysis of Singapore data from Jan - April 2020 Torneri et al. (in revision): biased estiamtes in case of intervention measures Publication: Ganyani Tapiwa, Kremer C cile, Chen Dongxuan, Torneri Andrea, Faes Christel, Wallinga Jacco, Hens Niel. Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020. Euro Surveill. 2020;25(17):pii=2000257. https://doi.org/10.2807/1560- 7917.ES.2020.25.17.2000257

  6. Own data collection initiatives Social contact data collection initiative (ERC TransMID) Large Corona Study (UAntwerpen UHasselt KU Leuven ULB) CoMIX study (H2020 EpiPose) Serological data collections (Handgift UAntwerpen) 6

  7. SOCRATES: An online tool leveraging a social contact data sharing initiative to assess mitigation strategies for COVID-19 Lander Willem, Thang Van Hoang, Sebastian Funk, Pietro Coletti, Philippe Beutels, Niel Hens Publication: Medrxiv & BMC Research Notes (2020) www.socialcontactdata.org

  8. www.socialcontactdata.org

  9. www.socialcontactdata.org

  10. CoMix: comparing mixing patterns in the Belgian population during and after lockdown Pietro Coletti, James Wambua, Amy Gimma, Lander Willem, Sarah Vercruysse, Bieke Vanhoutte, Christopher I Jarvis, Kevin van Zandvoort, John Edmunds, Philippe Beutels, Niel Hens Publication: Medrxiv & In revision (2020) www.socialcontactdata.org

  11. Timing

  12. All:

  13. Design and analysis of SARS-CoV-2 serological surveys Sereina Herzog, Steven Abrams, Niel Hens Ine Wouters, Jessie De Bie, Esra Ekinci, Heidi Theeten, Pierre Van Damme Publication: Medrxiv & In revision (2020)

  14. Serosurvey SARS-CoV-2 aim & planning Aim: Estimating seroprevalence of COVID-19 in Belgium from residual sera collected during routine laboratory testing Collections: Nr Collection period Total number samples (asked for) Total number samples (collected) 1) 30/03 - 05/04 4000 3910 2) 20/04 - 26/04 3000 3397 3) 18/05 - 25/05 3000 3242 4) 01/06 - 07/06 3000 2960 5) 29/06 - 04/07 2000 3023 6) 07/09 - 12/09 3000 3047 7) 17/09 - 12/10 3000 -

  15. Serosurvey SARS-CoV-2 results Figure legend Weighted seroprevalence (A, B, C) Weighted seroincidence (D, E, F) - overall (panel A+D), - by 10-year age bands (panel B+E), - by gender (panel D+F) (updated 28.09.2020)

  16. Closing remarks Conclusion Discussion Extremely valuable Open data Need to remove hurdles or expedite processes in a crisis On preprints Open software New initiative Ethics & privacy Infectieradar.be flawed reasoning: not sharing because of possible misinterpretation 16

Related


More Related Content

giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#