Overview of Synthetic Models in Transcriptional Data Analysis

 
Synthetic/CMC testing of
Integrative model
 
JW, 11/08/17
 
1
 
Generating synthetic transcriptome data (Model 1)
 
SNPs (10)
 
Enhancers (5)
 
Genes (10)
 
Modules
(10 X 3)
 
Trait (1)
 
 
 
 
 
2
 
Generating synthetic transcriptome data (Model 2)
 
SNPs (10)
 
Genes (10)
 
Modules
(4 X 1)
 
Trait (1)
 
 
 
 
3
 
Restricted Boltzmann Machine
 
Hidden Units
 
 
Visible Units
 
 
4
 
Restricted Boltzmann Machine
 
Training by Contrastive Divergence
 
v_0
 
h_0
 
v_1
 
h_1
 
Data stats
 
Model stats
 
5
 
Trait prediction from Model 1 data from
transcriptome
 
Training epoch
 
Reconstruction Error
 
Prediction Error (training)
 
Prediction Error (testing)
 
6
 
Trait prediction and imputation from Model 2 data
 
Prediction Error
(training)
 
Imputation Error
(training)
 
Prediction Error
(testing)
 
Imputation Error
(testing)
 
x axis  = Training
epoch
 
7
 
Deep Boltzmann Machine
 
8
 
Hidden Units (1)
 
Model:
 
Deep Boltzmann Machine
 
9
 
Modules (1)
 
Transcriptome
 
Genome
 
Model:
 
Deep Boltzmann Machine Training
 
First, use Restricted Boltzmann Machine training, first on layers
(v,h_1), and then on layers (h_1,h_2) to initialize weights (Contrastive
Divergence)
 
Then, do joint training of all weights, using a combination of mean-
field and persistent MCMC to evaluate expected statistics for gradient
 
Back-propagation can be run as a final step to optimize weights for a
discriminative classifier (i.e. trait prediction)
 
10
 
Deep Boltzmann machine training on synthetic data
 
11
 
Reconstruction Error
 
Prediction Error (training)
 
Prediction Error (testing)
 
Training epoch
 
Training epoch
 
Training epoch
 
Model 1
 
Model 2
 
RBM, CMC data, SCZ vs Control
 
Training epoch
 
Reconstruction Error
 
Prediction Error (training)
 
Prediction Error (testing)
 
12
 
DBM, CMC data, SCZ vs Control
 
Training epoch
 
Reconstruction Error
 
Prediction Error (training)
 
Prediction Error (testing)
 
13
 
To incorporate:
 
Known modules
Imputation / eQTLs
GRN connectivity
PEER normalized input data
Enhancer / cQTL data
Backpropagation fine-tuning
Other conditions / traits (Autism, Bipolar, Male/Female)
 
14
Slide Note
Embed
Share

This content showcases various synthetic models for analyzing transcriptome data, including integrative models, trait prediction, and deep Boltzmann machines. It explores the generation of synthetic transcriptome data and the training processes involved in these models. The use of Restricted Boltzmann Machines and Deep Boltzmann Machines for data analysis and prediction is detailed. Additionally, the content discusses error rates in prediction and imputation tasks, providing insights into the evaluation of model performance in transcriptional data analysis.

  • Synthetic Models
  • Transcriptome Data
  • Data Analysis
  • Machine Learning
  • Prediction

Uploaded on Sep 21, 2024 | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. Download presentation by click this link. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

E N D

Presentation Transcript


  1. Synthetic/CMC testing of Integrative model JW, 11/08/17 1

  2. Generating synthetic transcriptome data (Model 1) Trait (1) Modules (10 X 3) Enhancers (5) Genes (10) SNPs (10) 2

  3. Generating synthetic transcriptome data (Model 2) Trait (1) Modules (4 X 1) Genes (10) SNPs (10) 3

  4. Restricted Boltzmann Machine Hidden Units Visible Units 4

  5. Restricted Boltzmann Machine Training by Contrastive Divergence Model stats Data stats h_1 h_0 v_1 v_0 5

  6. Trait prediction from Model 1 data from transcriptome Prediction Error (training) Prediction Error (testing) Reconstruction Error 0.6 0.5 1400 0.48 1300 0.55 0.46 1200 0.44 1100 0.5 0.42 1000 0.45 0.4 900 800 0.38 0.4 700 0.36 600 0.34 0.35 500 0.32 0.3 400 0.3 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 Training epoch 6

  7. Trait prediction and imputation from Model 2 data 0.54 x axis = Training epoch 0.56 0.54 0.52 Prediction Error Prediction Error 0.52 0.5 0.5 (training) 0.48 (testing) 0.48 0.46 0.46 0.44 0.44 0.42 0.42 0.4 0.4 0.38 0.38 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 0.54 0.58 0.53 0.56 Imputation Error Imputation Error 0.52 0.54 0.51 (training) (testing) 0.52 0.5 0.49 0.5 0.48 0.48 0.47 0.46 0.46 7 0.45 0.44 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

  8. Deep Boltzmann Machine Class Indicator Model: Hidden Units (2) Hidden Units (1) Visible Units 8

  9. Deep Boltzmann Machine Trait Model: ? ?,??,??;?,? 1 ?(?,?)exp( ? ?,??,??;?,? ) Modules (2) = Modules (1) Transcriptome Genome 9

  10. Deep Boltzmann Machine Training First, use Restricted Boltzmann Machine training, first on layers (v,h_1), and then on layers (h_1,h_2) to initialize weights (Contrastive Divergence) Then, do joint training of all weights, using a combination of mean- field and persistent MCMC to evaluate expected statistics for gradient Back-propagation can be run as a final step to optimize weights for a discriminative classifier (i.e. trait prediction) 10

  11. Deep Boltzmann machine training on synthetic data Reconstruction Error Prediction Error (training) Prediction Error (testing) 340 0.45 0.48 0.4 335 0.47 0.35 330 0.46 0.3 Model 1 325 0.45 0.25 0.2 320 0.44 0.15 315 0.43 0.1 310 0.42 0.05 305 0 0.41 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 414 0.35 0.49 412 0.3 410 0.485 0.25 408 Model 2 406 0.48 0.2 404 0.15 402 0.475 400 0.1 398 0.47 0.05 396 394 0 0.465 0 100 200 Training epoch 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000 11 Training epoch Training epoch

  12. RBM, CMC data, SCZ vs Control Prediction Error (training) Prediction Error (testing) Reconstruction Error 104 6.5 0.55 0.52 6 0.5 0.5 5.5 0.48 0.45 5 0.46 0.4 4.5 0.44 0.35 4 0.42 0.3 3.5 0.4 0.25 3 0.38 0.2 2.5 0.36 2 0.15 0.34 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 Training epoch 12

  13. DBM, CMC data, SCZ vs Control Prediction Error (training) Prediction Error (testing) Reconstruction Error 104 1.87 0.45 0.46 1.86 0.4 0.45 1.85 0.35 0.44 1.84 0.3 0.43 1.83 0.25 0.42 1.82 0.2 0.41 1.81 0.15 0.4 1.8 0.1 0.39 1.79 1.78 0.05 0.38 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 Training epoch 13

  14. To incorporate: Known modules Imputation / eQTLs GRN connectivity PEER normalized input data Enhancer / cQTL data Backpropagation fine-tuning Other conditions / traits (Autism, Bipolar, Male/Female) 14

Related


More Related Content

giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#