Exploring Fair Sharing and Equipartitioning in Mathematics Learning

Slide Note
Embed
Share

Delve into the concept of equipartitioning and fair sharing in mathematics, focusing on experiences of students in kindergarten through 2nd grade. Understand how to divide objects fairly among different numbers of people, predict size changes in fair shares, and explore division as equipartitioning through engaging activities. Discover the importance of understanding wholes and equal portions in fractions and division, all while fostering critical thinking and problem-solving skills in young learners.


Uploaded on Oct 05, 2024 | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. Download presentation by click this link. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

E N D

Presentation Transcript


  1. PARTNERS forMathematicsLearning GradeTwo Module3 Partners forMathematicsLearning

  2. 2 Equipartitioning Equipartitioningmeans SharingFairly Whatexperiences havestudentshad withsharingfairly? Partners forMathematicsLearning

  3. 3 WhatHappensinKand1stGrades? Sharecollectionsofobjectsfairlyandreassemble Kindergarten:sharebetween2people 1stgrade:sharebetween2-6people Sharerectanglesandcirclesamongtwoorfour peopleandreassemble 1stgrade Partners forMathematicsLearning

  4. 4 WhatHappensin2ndGrade? LookattheEssentialStandards Fairlysharecollectionsandreassemblethem Fairlysharearectangleorcircleamongtwo, four,eight;threeandsixpeopleand reassembleit Nametheshareas 1/nthofthewhole Predictthatthesizeofafairsharedecreases asthenumberofsharesincreases,andvice versa Partners forMathematicsLearning

  5. 5 Equipartitioning Partsofawhole Poland France Continuousorareamodels Equalsharesbysub-dividingawhole Partners forMathematicsLearning

  6. 6 Equipartitioning Partsofagroup Discreteorsetmodels Dividingintosubsetsofequalsize(equal numbersofelements)

  7. 7 Equipartitioning,Division,Fractions Allfocusonequalportions Understandingthe whole isimportant Oftenreferredtoas fairshares Modelsmaylookdifferentdependingon thecontext Partners forMathematicsLearning

  8. 8 Equipartitioning,Division,Fractions Howcould2peoplefairlysharethecake? Thegumballs? Howcouldyoudividethecakeandthe gumballsinto2equalparts? Show1/2ofthecakeand1/2ofthe gumballs Partners forMathematicsLearning

  9. 9 DivisionasEquipartitioning Getatleast15two-colorcounters Usethemtosolvetheseproblems: Larryand3friendsaresharing12cupcakes. Howmanycupcakeswilleachchildgetifeach getsafairshare? Larry,Mary,DevinandMartezeachhave3 brownies.HowmanybrowniesdidLarry s mombake? Partners forMathematicsLearning

  10. 10 StudentThinking Tom,Renee,andSaracollectedsome apples.Eachpersongotfiveapples.What wasthetotalnumberofapplescollected? Whatconceptualunderstandingrelatedto equipartitioningdostudentshave? Howdowestarttobuildunderstandingofthe relationshipsbetweenthewholeandtheequal parts? Partners forMathematicsLearning

  11. 11 Relationships:WholesandParts Needstobemadeexplicit Wholewas15apples 5applesrepresented1/3ofthewhole 5representedafairsharefor3people Bringingtogethereachofthethreethirds makesthewhole If5peoplesharedthesamewhole, thefairsharewouldbesmaller Partners forMathematicsLearning

  12. 12 ClassroomProblems Writeseveralproblemsfor2ndgradersthat addressdivision asequipartitioning Ideastoinclude Equalsizedgroups Determineinitialsizeofagroupgiven theequalparts Describewhathappenswhencollections aredividedfairlyandwhathappens whenreassembled Partners forMathematicsLearning

  13. 13 ConsideringSetModels Thewholeisthetotalsetofobjectsand subsetsofthewholearefractionalparts Numberofobjectsnotsizeisimportant Examples:counters,people,M&Ms, anydiscreteobjects Partners forMathematicsLearning

  14. 14 FairShares:Rectangles Foldasquareinhalf Cutyoursquare Howdoyouknoweachhalfisequal?Talk withaneighbor Isyourhalfequivalenttoyourneighbor s? Whatkeyideasdoyouwant2ndgradersto understandinthisactivity? Partners forMathematicsLearning

  15. 15 KeyIdeas Eachpartisone-halfofthewholesquare Thetwopartsmakethesquare Whyarethesenothalves(non-examples)? Whymaysomestudentsthinktheyare? Ifwestartedwithdifferentsizesquares, wouldtheone-halvesbeequivalent? Partners forMathematicsLearning

  16. 16 OneHalf?HowManyWays? Partners forMathematicsLearning

  17. 17 OneHalf?HowManyWays? Partners forMathematicsLearning

  18. 18 RectanglesandCircles 2ndgradersshare rectanglesandcircles among2,4,8,3,and6people Whatexperiencesdoweneedtoprovide students? Context Models Partners forMathematicsLearning

  19. 19 PeopleFractions Partners forMathematicsLearning

  20. 20 Goofy Fractions Partners forMathematicsLearning

  21. 22 Context Maria smombaked apanofbrownies HowcanMariasharethebrownieswith3 friendsandherself? Partners forMathematicsLearning

  22. Get to 30 Play the game What mathematics is addressed by the game? Partners forMathematicsLearning

  23. 23 ContextualProblems Withapartnerbrainstormproblemsthat matchtheEssentialStandard: Explainthedivisionofrectanglesand circlestoaccommodatedifferentnumbers ofpeople Shareyourideas Partners forMathematicsLearning

  24. 24 MakingSenseofFractions Studentsneed: Multiplemodels Experiencewith multiplecontexts Time Language Partners forMathematicsLearning

  25. 25 Fractions:ReasonsforDifficulties Contentisnew(proportionalvs.additive reasoning)andnotationisdifferent Conceptual-developmentexperiencesarelimited; symbolsareoftenemphasized Instructionis Tooabstract Tooprocedural Withoutconnections Withlimitedmodels Withoutmeaningfulcontexts

  26. 26 FractionResearch Students difficultiesinunderstanding fractionsstemfromlearningfractionsby usingrotememorizationofprocedures withoutaconnectionwithinformalways ofsolvingproblemsinvolvingfractions. SteffeandOlive,2002 Partners forMathematicsLearning

  27. 27 In2ndGrade: NoSymbolsforFractions 1 2 Partners forMathematicsLearning

  28. 28 Math&Literature Whathappenstoeachchild sshare asthedoorbellrings? Whathappenstoeach child ssharewhen Grandmaarrives? Partners forMathematicsLearning

  29. 29 CompensatoryPrinciple Theprinciplestatesthatthebiggerthe unit,thesmallerthenumberofthatunit needed 1/8isfewerthan1/4;1/4isfewcookies than1/2ofthecookies Whatexperiencesmightleadstudentsin developinganunderstandingofthisidea? Partners forMathematicsLearning

  30. 30 WhenConceptsAreNot Well-Developed NAEPQuestion: Estimatethesumof12/13and7/8 a.1 b.2 c.19 d.21 Howdidyoudecideyourestimate? Whichanswerdidmost13yearold studentschoose? Partners forMathematicsLearning

  31. 31 WhenConceptsAreNot Well-Developed NAEPQuestion Estimatethesumof12/13and7/8 a.1b.2 c.19d.21 Studentslookatfractionsasthoughthey representtwoseparatewholenumbers Thisleadstomisinterpretationandan inabilitytoaccessthereasonablenessof results Partners forMathematicsLearning

  32. 32 ChineseProverb TellmeandI'llforget; showmeandImayremember; involvemeandI'll understand. Partners forMathematicsLearning

  33. 33 WhatisMeasurement? Acountofhowmanyunitsareneededto fill,cover,ormatchtheattributeofthe objectbeingmeasured Afundamentalmathematicalprocess interwoventhroughoutallstrandsof mathematics Partners forMathematicsLearning

  34. 34 WhyMeasurement? Anessentiallinkbetween mathematicsandotherdisciplinessuchas science,art,music,andsocialstudies Itmakesmathematicsrealandtangiblefor studentsgivingthemahandleontheir world Whataretheimplicationsforteaching measurement?

  35. 35 Measurement:BigIdeas Anobjectcanbedescribedand categorizedinmultipleways(attributes) Themeasurementofaspecificnumerical attributetellsthenumberofunits Theprocessofmeasurementissimilarfor allattributes,butthemeasurementsystem andtoolvaryaccordingtotheattribute Measurementsareaccuratetotheextent thattheappropriateunit/toolisused properly

  36. 36 MeasurementStandards LookattheEssential Standardsfor Measurement LookattheClarifying Objectives Partners forMathematicsLearning

  37. 37 Attributes Whataretheattributesofthepresent? Whichofthesearemeasurable? Partners forMathematicsLearning

  38. 38 ProcessofMeasurement Determinetheattribute tobemeasured Chooseanappropriateunit thathasthesameattribute Choosethetool Determinehowmanyofthatunitisneeded byfilling,covering,ormatchingtheobject Partners forMathematicsLearning

  39. 39 ACloakforaDreamer Coveringspacewith nonstandardunits leavingnogaps oroverlaps Partners forMathematicsLearning

  40. 40 MeasuringaSquare Usethepatternblockstocoverthesquare Onlyuseonetypeofpatternblock Partners forMathematicsLearning

  41. 41 ComputerActivities www.arcytech.org/java/patterns/patterns_j.shtml Partners forMathematicsLearning

  42. 42 MeasurementComponents Conservation Transitivity Partitioning UnitIteration CompensatoryPrinciple Partners forMathematicsLearning

  43. 43 ComponentsofMeasurement Conservation:anobjectmaintainsthe samesizeifitisrearranged,transformed, ordividedinvariousways Partners forMathematicsLearning

  44. 44 ConservationExamples Studentsexploreconservation Takeaclayball,cutitinhalf.Thenrollone halfintoaballandotherintoasnake.Dothey havethesamemass? Pourthesameamountofliquidfromone containertoanother.Howtallistheliquidin thecontainer?Doesthe amountstaythesame?

  45. 45 ComponentsofMeasurement Transitivity:twoobjectscanbecompared intermsofameasurableattributeusinga thirdobject IfA=BandB=C,thenA=C IfA<BandB<C,thenA<C IfA>BandB>C,thenA>C

  46. 46 Partitioning Largerunitscanbesubdividedinto equivalentunits mentallysubdividing Chooseaplaceintheroom(table,wall) Mentallydivideitinhalf Chooseaunitofmeasure(marker,handspan) Determinethemeasurementanddoubleit Partners forMathematicsLearning

  47. 47 ComponentsofMeasurement Units:theattributebeingmeasured dictatesthetypeofunitused;theunitmust havethesameattributeastheattributeto bemeasured Partners forMathematicsLearning

  48. 48 ComponentsofMeasurement Unititeration:unitsmustberepeatedin ordertodeterminethemeasure Partners forMathematicsLearning

  49. 49 IterationExperiences Whatquestionsmight youasktoencourage thesestudentstofocus ontheplacementof units? Howcanyouprovideopportunitiesfor studentstouseiteration? Partners forMathematicsLearning

  50. 50 CompensatoryPrinciple Thecompensatoryprinciplestatesthat thebiggertheunit,thesmallerthenumber ofthatunitisneeded Turntoyourpartnerandgiveanexample ofwhatthismeans Whathappenswhentheunitusedto measureissmaller?Doyouneedmoreor fewerunits? Partners forMathematicsLearning

Related


More Related Content