Design of Control Systems for Compensation

Design of Control Systems for Compensation
Slide Note
Embed
Share

Detailed discussion on the design of control systems for both incremental and retroactive compensation, with examples of related problems. Exploration of phase-lead and phase-lag compensation, analyzing the impact on polar plots and Bode diagrams to differentiate between phase-lead and phase-lag systems.

  • Control Systems
  • Compensation
  • Design
  • Phase-Lead
  • Phase-Lag

Uploaded on Feb 23, 2025 | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.

E N D

Presentation Transcript


  1. KONTROL SSTEMLER TASARIMI lerlemeli Kompenzasyon Gerilemeli Kompenzasyon lerlemeli-Gerilemeli Kompenzasyon rnek Problemler 23.02.2025 Dr. Nurdan Bilgin 20210-2021 1

  2. Faz ilerlemeli kompenzasyon Faz ilerlemeli kompenzat r n genel formu ? +1 ? +1 ?? + 1 ??? + 1= ?? ? ??? = ??? , (0 < ? < 1) ?? Yandaki ekil Kc= 1 olmak zere ??? + 1 ???? + 1 ???? = ??? Sin zoidal transfer fonksiyonunu kutupsal grafi ini g stermektedir. G r ld gibi ??maksimum faz a s n g stermektedir. 1 ? =1 ? 1 + ? 2 sin??= 1 + ? 2 23.02.2025 Dr. Nurdan Bilgin 2020-2021 2

  3. Gerilemeli Kompenzasyon Gerilemeli kompanzat r n genel formu a a daki gibiydi. ? +1 ? +1 ?? + 1 ??? + 1= ?? ? ??? = ??? , (? > 1) ?? 23.02.2025 Dr. Nurdan Bilgin 20210-2021 3

  4. Faz Gerilemeli vsFaz lerlemeli Faz lerlemeli Faz Gerilemeli Faz gerilemeli ve faz ilerlemeli sistemlerin kutupsal yer e rileri birbirinin simetri idir. 23.02.2025 Dr. Nurdan Bilgin 20210-2021 4

  5. Faz Gerilemeli vsFaz lerlemeli Faz lerlemeli Faz Gerilemeli Faz gerilemeli ve faz ilerlemeli kompanzat rlerin bode diyagramlar na bak ld nda faz gerilemeli kompanzat r n al ak ge iren, faz ilerlemeli kompanzat r n ise y ksek ge iren filtre oldu u g r l r. 23.02.2025 Dr. Nurdan Bilgin 20210-2021 5

  6. FAZ GERLEMEL-LERLEMEL KOMPENZASYON ekilde g sterilen ekilde ba lanm a a daki faz gerilemeli-ilerlemeli kompenzat r kulland m z varsayal m: ? +1 ? +1 ?1 ?2 1 ??2 ??= ?? ? +? ? + ?1 Bu denklemde ? > 1 ve ? > 1. (??sabitinin faz gerilemeli-ilerlemeli kompenzat r n ilerletici k sm na ait oldu unu d n n z) Faz gerilemeli-ilerlemeli kompenzat r n tasar m n bu b l mde ? = ? olma durumu i in inceleyece iz. 23.02.2025 Dr. Nurdan Bilgin 20210-2021 6

  7. FAZ GERLEMEL-LERLEMEL KOMPENZASYON ? > 1 ve ? > 1 art ? +1 ? +1 ?1 ?2 1 ??2 ??= ?? ? +? ? + ?1 A a daki terim. ? +1 =1 ?1? + 1 ?1 ?? + 1 ?1 (? > 1) ? +? ? ?1 Faz ilerlemeli devrenin etkilerini retir. Faz gerilemeli devrenin etkilerini ise a a daki terim retir. ? +1 ?2 1 ??2 ?2? + 1 ??2? + 1 = ? ? + 23.02.2025 Dr. Nurdan Bilgin 20210-2021 7

  8. FAZ GERLEMEL-LERLEMEL KOMPENZASYON Faz gerilemeli-ilerlemeli kompanzat r; 0 < ? < ?1i in faz gerilemeli kompanzat r gibi ?1< ? < i in faz ilerlemeli kompanzat r gibi davranmaktad r. 1 Grafikler ??= 1,? = ? = 10 ?? ?2= 10?1i in izilmi tir. ?1= ?1?2 23.02.2025 Dr. Nurdan Bilgin 20210-2021 8

  9. rnek 23.02.2025 Dr. Nurdan Bilgin 20210-2021 9

  10. [val,idx]=min(abs(magdb-(-GME))); minValGME=magdb(idx); minw=w(idx); IT=minw*sqrt(alfa);ITa=IT/alfa;Kc=K/alfa; numc=Kc*[1 IT];denc=[1 ITa]; sysc=tf(numc,denc);sysp=tf(num,den); sys_son=sysp*sysc; figure; bode(sys_son); [Gms,Pms,Wgms,Wpms] = margin(sys_son); GmdB = 20*log10(Gms); [GmdB,Pms,Wgms,Wpms] sysun_CL=feedback(sysp,1); sysc_CL=feedback(sys_son,1); t = 0:0.01:6; figure; [c1,x1] = step(sysun_CL,t); [c2,x2] = step(sysc_CL,t); plot(t,c1,'.',t,c2,'-');legend('Uncompensated System','Compensated System') grid; title('Unit-Step Responses of Uncompensated System and Compensated System') xlabel('t Sec'); ylabel('Outputs') sysint=tf(1,[1 0]); figure; [c1,x1] = step(sysint*sysun_CL,t); [c2,x2] = step(sysint*sysc_CL,t); plot(t,c1,'.',t,c2,'-',t,t,'--'); grid; title('Unit-Ramp Responses of Uncompensated System and Compensated System'); xlabel('t Sec'); ylabel('Outputs') legend('Uncompensated System','Compensated System') clear all;clc;close all; %%Spesifikasyonlar kv=10; % PMC=25; GMC=8; a=5; %Transfer fonksiyonu nums=a*[1 0];num=a; den=conv(conv([1 1],[0.1 1]),[1 0]); %den=[1 1 0] %bode(num,den); sys=tf(nums,den); [Num,Den] = tfdata(sys,'v'); syms s sys_syms=poly2sym(Num,s)/poly2sym(Den,s); lim = limit(sys_syms,s,0);lim=double(lim); K=kv/lim;num1=K*a; sys1=tf(num1,den); w = logspace(-2,3,1000); figure; bode(sys1,w); [mag,ph]=bode(sys1,w); [Gm,Pm,Wgm,Wpm] = margin(sys1); ang=PMC-Pm+10; syms alf eq=sin(ang*pi/180)*(1+alf)-(1-alf); alfa=vpa(solve(eq),4);alfa=double(alfa); GME=1/sqrt(alfa);GME=20*log10(GME); for i=1:length(w) magdb(i)=20*log10(mag(i)); phaseA(i)=ph(i); end 23.02.2025 Dr. Nurdan Bilgin 20210-2021 10

  11. 23.02.2025 Dr. Nurdan Bilgin 20210-2021 11

  12. 23.02.2025 Dr. Nurdan Bilgin 20210-2021 12

  13. 23.02.2025 Dr. Nurdan Bilgin 20210-2021 13

  14. 23.02.2025 Dr. Nurdan Bilgin 20210-2021 14

  15. 23.02.2025 Dr. Nurdan Bilgin 20210-2021 15

  16. [val,idx]=min(abs(magdb-(abs(20*log10(Gm))+21)));%magdb-(20*log10(Gm)+20)[val,idx]=min(abs(magdb-(abs(20*log10(Gm))+21)));%magdb-(20*log10(Gm)+20) minValGME=magdb(idx); minw=w(idx);minw=round(minw,1); IT=minw;ITa=IT*B numc=conv([1 IT2],[1 IT]); denc=conv([1 ITB2],[1 ITa]); figure; bode(numc,denc); title('Faz Gerilemeli- lerlemeli Kompanzat r n Bode Diyagram ') figure; bode(sys1,w);hold on; sys2=tf(conv(numc,num),conv(denc,den)) bode(sys2,w);legend('sys1_uncompan.','sys2_comp.'); [Gm,Pm,Wgm,Wpm] = margin(sys2) sysc_CL=feedback(sys2,1); t = 0:0.01:20; figure; [c2,x2] = step(sysc_CL,t); plot(t,c2,'-'); grid; title('Unit-Step Responses of Compensated System') xlabel('t Sec'); ylabel('Outputs') sysint=tf(1,[1 0]); figure; [c2,x2] = step(sysint*sysc_CL,t); plot(t,c2,'-',t,t,'--'); grid; title('Unit-Ramp Responses of Compensated System'); xlabel('t Sec'); ylabel('Outputs') clear all;clc;close all; %%Spesifikasyonlar kv=20; % PMC=40; GMC=5; %Transfer fonksiyonu nums=[1 0]; den=conv(conv([1 1],[1 6]),[1 0]); %den=[1 1 0] %bode(num,den); sys=tf(nums,den); [Num,Den] = tfdata(sys,'v'); syms s sys_syms=poly2sym(Num,s)/poly2sym(Den,s); lim = limit(sys_syms,s,0);lim=double(lim); K=kv/lim;num=K; sys1=tf(num,den); w = logspace(-1,1,1000); [mag,ph]=bode(sys1,w); [Gm,Pm,Wgm,Wpm] = margin(sys1);i=1;B=10;Qm=1; while Qm<PMC Qm=asin((B-1)/(B+1))*180/pi; end IT2=Wgm/10;ITB2=IT2/B; for i=1:length(w) magdb(i)=20*log10(mag(i)); phaseA(i)=ph(i); end 23.02.2025 Dr. Nurdan Bilgin 20210-2021 16

  17. 23.02.2025 Dr. Nurdan Bilgin 20210-2021 17

  18. 23.02.2025 Dr. Nurdan Bilgin 20210-2021 18

  19. 23.02.2025 Dr. Nurdan Bilgin 20210-2021 19

  20. 23.02.2025 Dr. Nurdan Bilgin 20210-2021 20

More Related Content