Control Hijacking Attacks in Computer Systems

 
Control Hijacking
 
Basic Control
Hijacking Attacks
Announcements:
Project 1 is out:   part I due Apr. 13.
Please come to section on Friday at 11:30am
 
Control hijacking attacks
 
 
Attacker’s goal
:
Take over target machine     (e.g.  web server)
Execute arbitrary code on target by hijacking
application control flow
Examples:
Buffer overflow and integer overflow attacks
Format string vulnerabilities
Use after free
First example:   buffer overflows
 
Extremely common bug in C/C++ programs.
First major exploit:  1988 Internet Worm.   Fingerd.
 
Whenever possible avoid C/C++
Often cannot avoid C/C++ :
Need to understand
attacks and defenses
Source:  
web.nvd.nist.gov
 
Feb. 2024:  White House support for memory safety
 
What is needed
 
Understanding C functions, the stack, and the heap.
Know how system calls are made
The exec() system call
Attacker needs to know which CPU and OS used on the target machine:
Our examples are for  x86-64  running  Linux or Windows
Details vary slightly between CPUs and OSs:
Stack Frame structure     
(Unix vs. Windows,    x86 vs. ARM)
Little endian vs. big endian
 
Linux process memory layout  
(x86-64)
unused
 
0x0000 0000 0040 0040
text and data
run time heap
shared libraries
user stack
 
0x0000 7F1F6 XXXX XXXX
 
0x0000 7FFF FFFF FFFF
 
%rsp
 
Loaded
from executable
 
0
 
(stack pointer)
 
(128 TB)
 
(
esp
 in 32-bit mode)
exception handlers
 
Stack Frame
arguments
return address
stack base pointer
local variables
 
rsp
 
Stack
Growth
 
high
 
low
callee saved registers
 
rbp
 
(
esp
 in 32-bit mode)
What are buffer overflows?
void func(char *str) {
   char buf[128];
   strcpy(buf, str);
 
do-something(buf);
}
Suppose a web server contains a function:
 
After func() is called stack looks like:
argument:   str
return address
stack base pointer
char buf[128]
 
rsp
What are buffer overflows?
void func(char *url) {
   char buf[128];
   strcpy(buf, url);
 
do-something(buf);
}
What if  
*url
   is  144 bytes long?   
After   
strcpy
:
argument:   str
return address
stack base pointer
char buf[128]
rsp
 
Poisoned return address!
Problem:
      no bounds checking in  
strcpy()
char buf[128]
return address
Basic stack exploit
 
Suppose    
*url
     is such that
       after  
strcpy
  stack looks like:
Program P:    
exec(“/bin/sh”)
 
 
When   
func()
   exits,  the user gets shell  !
Note:  attack code P runs 
in stack
.
 
(exact shell code by Aleph One)
Program P
low
high
Stack
 
The NOP slide
 
Problem:   how does attacker
 
      determine ret-address?
 
Solution:   NOP slide
Guess 
approximate
 stack state
when 
func()
 is called
Insert many NOPs before program P:
 
nop 
(0x90)
 ,     xor eax,eax  ,     inc ax
char buf[128]
return address
NOP Slide
Program P
 
low
 
high
 
Stack
Details and examples
 
Some complications:
Program   P  should not contain the ‘\0’  character.
Overflow should not crash program before  func()  exits.
(in)Famous 
remote
 stack smashing overflows:
Overflow in Windows animated cursors (ANI).     
LoadAniIcon()
Buffer overflow in Symantec virus detection  
(May 2016)
 
overflow when parsing PE headers 
… kernel vuln.
 
Many unsafe libc functions
 
 
strcpy 
(char *dest,  const char *src)
 
strcat 
(char *dest, const char *src)
 
gets
 
(char *s)
 
scanf 
( const char *format, … )           and many more.
“Safe” libc versions  
strncpy(), strncat()  
are misleading
e.g.  
strncpy()   
may leave string unterminated.
Windows C run time  (CRT):
strcpy_s (*dest, 
DestSize
, *src)
:   ensures proper termination
 
Buffer overflow 
opportunities
 
Exception handlers:     
(
 more on this in a bit)
Overwrite the address of an exception handler in stack frame.
 
Function pointers:    
(e.g.  PHP 4.0.2,   MS MediaPlayer Bitmaps)
 
Overflowing  buf  will override function pointer.
Longjmp buffers:  
longjmp(pos)         (e.g. Perl 
5.003)
Overflowing buf next to pos overrides value of pos
.
Heap exploits:   corrupting virtual tables
 
Compiler generated function pointers  (e.g.  C++ code)
 
 
 
 
 
 
After overflow of  
buf
 :
vptr
data
Object  T
FP1
FP2
FP3
vtable
method #1
method #2
method #3
vptr
buf
[256]
data
vtable
An example:  exploiting the browser heap
Attacker’s goal is to infect browsers visiting the web site
How:  send javascript to browser that exploits a heap overflow
malicious web server
victim browser
 
 
A reliable exploit?
 
 
<SCRIPT language="text/javascript">
 
 
shellcode
 = unescape("%u4343%u4343%...");    // allocate in heap
 
 
overflow-string
 = unescape(“%u2332%u4276%...”);
 
 cause-overflow(overflow-string );        // overflow  buf[ ]
 
</SCRIPT>
 
Problem:
 
attacker does not know where browser
 
places 
shellcode
 on the heap
ptr
buf
[256]
data
shellcode
vtable
 
???
Heap Spraying     
[SkyLined]
Idea:
 
1. use Javascript to spray heap
    
with shellcode  (and 
NOP 
slides)
  
2. then point vtable ptr anywhere in spray area
heap
vtable
heap spray area
 
Javascript heap spraying
 
  
var  nop = unescape(“%u9090%u9090”)
  
while (nop.length < 0x100000)  nop += nop;
  
var shellcode = 
unescape("%u4343%u4343%...");
  
var x = new Array ()
  
for (i=0;  i<1000;  i++) {
   
x[i] = nop + shellcode;
  
}
 
 
 
Pointing  function-ptr  almost anywhere in heap will
 
cause shellcode to execute.
 Ad-hoc heap overflow mitigations
 
Better browser architecture:
Store JavaScript strings in a separate heap from browser heap
OpenBSD and Windows 8 heap overflow protection:
 
 
 
In theory:  allocate every object on a separate page  (eFence, Archipelago’08)
 
   not practical:  too wasteful in physical memory
 
Finding overflows by fuzzing
 
To find overflow:
Run web server on local machine
Use AFL to issue malformed requests (ending with   “$$$$$” )
Fuzzers:  automated tools for this (next week)
If web server crashes,
 
search core dump for  “$$$$$” to find overflow location
 
Construct exploit    
(not easy given latest defenses in next lecture)
 
Control Hijacking
 
More Control
Hijacking Attacks
 
More Hijacking Opportunities
 
Integer overflows
:    
(e.g.  MS DirectX MIDI Lib)
Double free
:    double free space on heap
Can cause memory mgr to write data to specific location
Examples:    CVS server
U
s
e
 
a
f
t
e
r
 
f
r
e
e
:
 
 
u
s
i
n
g
 
m
e
m
o
r
y
 
a
f
t
e
r
 
i
t
 
i
s
 
f
r
e
e
d
F
o
r
m
a
t
 
s
t
r
i
n
g
 
v
u
l
n
e
r
a
b
i
l
i
t
i
e
s
 
Integer Overflows     
(see Phrack 60)
 
Problem:    what happens when int exceeds max value?
int m;    (32 bits)             short s;    (16 bits)               char c;    (8 bits)
 
c = 0x80 + 0x80 = 128 + 128
  
     c = 0
 
s = 0xff80 + 0x80
   
     s = 0
 
m = 0xffffff80 + 0x80
   
     m = 0
 
Can this be exploited?
An example
void  func( char *buf1, *buf2,    unsigned int len1, len2) {
 
char temp[256];
 
if  
(len1 + len2 > 256)
   {return -1}
 
// length check
 
memcpy(temp,  buf1,  len1);
 
// cat buffers
 
memcpy(temp+len1,  buf2,  len2);
 
do-something(temp); 
 
// do stuff
}
 
What if   
len1 = 0x80,    len2 = 0xffffff80   
?
        
   len1+len2 = 0
Second  memcpy()  will overflow heap !!
 
An example:  a better length check
void  func( char *buf1, *buf2,    unsigned int len1, len2) {
 
char temp[256];
 
// length check
 
if   
(len1 > 256)   ||   (len2 > 256)   ||   (len1+ len2 > 256)
 
         
return -1;
 
memcpy(temp,  buf1,  len1);
 
// cat buffers
 
memcpy(temp+len1,  buf2,  len2);
 
do-something(temp); 
 
// do stuff
}
 
Source:  NVD/CVE
 
Integer overflow exploit stats
Dec. 2020:   integer underflow in F5 Big IP
 
     if  (8190 − nlen <= vlen )     // length check
  
return -1;
 
Format string bugs
Format string problem
 
   
int func(char *user)  {
   
  fprintf(stderr, user);
   
}
Problem
:   what if   *
user = “%s%s%s%s%s%s%s”
  ??
Most likely program will crash:   DoS.
If not, program will print memory contents.  Privacy?
Full exploit using   
user = 
%n
Correct form
:    
 fprintf( stdout, “%s”, user);
 
Vulnerable functions
 
Any function using a format string.
 
Printing:
 
printf, fprintf, sprintf, …
 
vprintf, vfprintf, vsprintf, …
 
Logging:
 
syslog,  err, warn
 
Exploit
 
Dumping arbitrary memory:
Walk up stack until desired pointer is found.
printf( “%08x.%08x.%08x.%08x|%s|”)
 
 
Writing to memory:
printf( “hello %n”, &temp)   --   writes ‘6’ into temp.
printf( “%08x.%08x.%08x.%08x.%n”)  --  difficult to exploit
 
Use after free exploits
 
 
High impact security vulns. in Chrome 2015 – 2020    
(C++)
 
70% due to memory management bugs
IE11 Example:   
CVE-2014-0282
 
 
(simplified)
<form id="form">
   <textarea id="c1" name="a1" ></textarea>
   <input      id="c2" type="text" name="a2” value="val">
</form>
<script>
    
function changer() {
        document.getElementById("form").innerHTML = "";
        CollectGarbage();           // erase  c1 and c2 fields
    }
    
document.getElementById("c1").onpropertychange = changer;
    document.getElementById("form").reset();
</script>
(IE11 written in C++)
 
What just happened?
 
c1.doReset()  
causes 
changer()  
to be called and free object c2
What just happened?
c1.doReset()  
causes 
changer()
  to be called and free object c2
 
Suppose attacker allocates a string of same size as vtable
 
When  c2.DoReset()   is called,  attacker gets shell
Use after free !
The exploit
<script>
    
function changer() {
        
document.getElementById(”form").innerHTML = "";
        CollectGarbage();
        --- allocate string object to occupy vtable location ---
    }
    document.getElementById("c1").onpropertychange = changer;
    document.getElementById("form").reset();
</script>
Lesson:  use after free can be a serious security vulnerability !!
 
Next lecture 
 
DEFENSES
 
THE  END
 
 
References on heap spraying
 
[1]
  
Heap Feng Shui in Javascript
,
  
by A. Sotirov,     
Blackhat Europe 
2007
 
[2]
  
Engineering Heap Overflow Exploits with JavaScript
  
M. Daniel, J. Honoroff, and C. Miller,    
WooT
 2008
 
[3]
  
Interpreter Exploitation: Pointer inference and JiT spraying
,
  
by Dion Blazakis
Slide Note
Embed
Share

Explore the concept of control hijacking attacks in computer systems, including buffer overflows, format string vulnerabilities, and use-after-free exploits. Learn about the attacker's goal, examples of attacks, and the importance of understanding C functions, the stack, and the heap. Delve into system calls, CPU and OS considerations, and the layout of process memory in Linux. Gain insights into stack frames and the risks posed by buffer overflows in applications.

  • Control Hijacking Attacks
  • Buffer Overflows
  • C Functions
  • System Calls
  • Process Memory Layout

Uploaded on Oct 03, 2024 | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. Download presentation by click this link. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

E N D

Presentation Transcript


  1. Announcements: Project 1 is out: part I due Apr. 13. Please come to section on Friday at 11:30am Control Hijacking Basic Control Hijacking Attacks Dan Boneh

  2. Control hijacking attacks Attacker s goal: Take over target machine (e.g. web server) Execute arbitrary code on target by hijacking application control flow Examples: Buffer overflow and integer overflow attacks Format string vulnerabilities Use after free Dan Boneh

  3. First example: buffer overflows Extremely common bug in C/C++ programs. First major exploit: 1988 Internet Worm. Fingerd. Whenever possible avoid C/C++ Often cannot avoid C/C++ : Need to understand attacks and defenses Feb. 2024: White House support for memory safety Source: web.nvd.nist.gov Dan Boneh

  4. What is needed Understanding C functions, the stack, and the heap. Know how system calls are made The exec() system call Attacker needs to know which CPU and OS used on the target machine: Our examples are for x86-64 running Linux or Windows Details vary slightly between CPUs and OSs: Stack Frame structure (Unix vs. Windows, x86 vs. ARM) Little endian vs. big endian Dan Boneh

  5. Linux process memory layout (x86-64) 0x0000 7FFF FFFF FFFF (128 TB) user stack %rsp (stack pointer) (esp in 32-bit mode) shared libraries 0x0000 7F1F6 XXXX XXXX run time heap Loaded text and data from executable 0x0000 0000 0040 0040 0 unused Dan Boneh

  6. Stack Frame high arguments return address stack base pointer rbp exception handlers Stack Growth local variables callee saved registers rsp low (esp in 32-bit mode) Dan Boneh

  7. What are buffer overflows? void func(char *str) { char buf[128]; Suppose a web server contains a function: After func() is called stack looks like: strcpy(buf, str); do-something(buf); } argument: str return address stack base pointer char buf[128] rsp Dan Boneh

  8. What are buffer overflows? void func(char *url) { char buf[128]; What if *url is 144 bytes long? After strcpy: strcpy(buf, url); do-something(buf); } argument: str return address stack base pointer Poisoned return address! Problem: no bounds checking in strcpy() *str char buf[128] rsp Dan Boneh

  9. Stack Basic stack exploit high Program P Suppose *url is such that after strcpy stack looks like: Program P: exec( /bin/sh ) (exact shell code by Aleph One) return address When func() exits, the user gets shell ! Note: attack code P runs in stack. char buf[128] low Dan Boneh

  10. Stack The NOP slide high Program P Problem: how does attacker determine ret-address? NOP Slide Solution: NOP slide return address Guess approximate stack state when func() is called Insert many NOPs before program P: nop (0x90) , xor eax,eax , inc ax char buf[128] low Dan Boneh

  11. Details and examples Some complications: Program P should not contain the \0 character. Overflow should not crash program before func() exits. (in)Famous remote stack smashing overflows: Overflow in Windows animated cursors (ANI). LoadAniIcon() Buffer overflow in Symantec virus detection (May 2016) overflow when parsing PE headers kernel vuln. Dan Boneh

  12. Many unsafe libc functions strcpy (char *dest, const char *src) strcat (char *dest, const char *src) gets (char *s) scanf ( const char *format, ) and many more. Safe libc versions strncpy(), strncat() are misleading e.g. strncpy() may leave string unterminated. Windows C run time (CRT): strcpy_s (*dest, DestSize, *src): ensures proper termination Dan Boneh

  13. Buffer overflow opportunities Exception handlers: ( more on this in a bit) Overwrite the address of an exception handler in stack frame. Function pointers: (e.g. PHP 4.0.2, MS MediaPlayer Bitmaps) Heap or stack FuncPtr buf[128] Overflowing buf will override function pointer. Longjmp buffers: longjmp(pos) (e.g. Perl 5.003) Overflowing buf next to pos overrides value of pos. Dan Boneh

  14. Heap exploits: corrupting virtual tables Compiler generated function pointers (e.g. C++ code) method #1 method #2 method #3 FP1 FP2 FP3 vptr data vtable NOP slide shell code Object T After overflow of buf : vptr data buf[256] vtable object T Dan Boneh

  15. An example: exploiting the browser heap Request web page Web page with exploit malicious web server victim browser Attacker s goal is to infect browsers visiting the web site How: send javascript to browser that exploits a heap overflow Dan Boneh

  16. A reliable exploit? <SCRIPT language="text/javascript"> shellcode = unescape("%u4343%u4343%..."); // allocate in heap overflow-string = unescape( %u2332%u4276%... ); cause-overflow(overflow-string ); // overflow buf[ ] </SCRIPT> Problem: attacker does not know where browser places shellcode on the heap ??? data ptr buf[256] vtable shellcode Dan Boneh

  17. Heap Spraying [SkyLined] Idea: 1. use Javascript to spray heap with shellcode (and NOP slides) 2. then point vtable ptr anywhere in spray area NOP slide shellcode heap vtable heap spray area Dan Boneh

  18. Javascript heap spraying var nop = unescape( %u9090%u9090 ) while (nop.length < 0x100000) nop += nop; var shellcode = unescape("%u4343%u4343%..."); var x = new Array () for (i=0; i<1000; i++) { x[i] = nop + shellcode; } Pointing function-ptr almost anywhere in heap will cause shellcode to execute. Dan Boneh

  19. Ad-hoc heap overflow mitigations Better browser architecture: Store JavaScript strings in a separate heap from browser heap OpenBSD and Windows 8 heap overflow protection: prevents cross-page overflows guard pages (non-writable pages in virtual memory) In theory: allocate every object on a separate page (eFence, Archipelago 08) not practical: too wasteful in physical memory Dan Boneh

  20. Finding overflows by fuzzing To find overflow: Run web server on local machine Use AFL to issue malformed requests (ending with $$$$$ ) Fuzzers: automated tools for this (next week) If web server crashes, search core dump for $$$$$ to find overflow location Construct exploit (not easy given latest defenses in next lecture) Dan Boneh

  21. Control Hijacking More Control Hijacking Attacks Dan Boneh

  22. More Hijacking Opportunities Integer overflows: (e.g. MS DirectX MIDI Lib) Double free: double free space on heap Can cause memory mgr to write data to specific location Examples: CVS server Use after free: using memory after it is freed Format string vulnerabilities Dan Boneh

  23. Integer Overflows (see Phrack 60) Problem: what happens when int exceeds max value? int m; (32 bits) short s; (16 bits) char c; (8 bits) c = 0 c = 0x80 + 0x80 = 128 + 128 s = 0 s = 0xff80 + 0x80 m = 0 m = 0xffffff80 + 0x80 Can this be exploited? Dan Boneh

  24. An example void func( char *buf1, *buf2, unsigned int len1, len2) { char temp[256]; if (len1 + len2 > 256) {return -1} memcpy(temp, buf1, len1); memcpy(temp+len1, buf2, len2); do-something(temp); } // length check // cat buffers // do stuff What if len1 = 0x80, len2 = 0xffffff80 ? len1+len2 = 0 Second memcpy() will overflow heap !! Dan Boneh

  25. An example: a better length check void func( char *buf1, *buf2, unsigned int len1, len2) { char temp[256]; // length check if (len1 > 256) || (len2 > 256) || (len1+ len2 > 256) return -1; memcpy(temp, buf1, len1); memcpy(temp+len1, buf2, len2); do-something(temp); } // cat buffers // do stuff Dan Boneh

  26. Integer overflow exploit stats 700 600 500 400 300 200 100 0 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2015 2016 2017 2018 2019 2020 Dec. 2020: integer underflow in F5 Big IP if (8190 nlen <= vlen ) // length check return -1; Source: NVD/CVE Dan Boneh

  27. Format string bugs Dan Boneh

  28. Format string problem int func(char *user) { fprintf(stderr, user); } Problem: what if *user = %s%s%s%s%s%s%s ?? Most likely program will crash: DoS. If not, program will print memory contents. Privacy? Full exploit using user = %n Correct form: fprintf( stdout, %s , user); Dan Boneh

  29. Vulnerable functions Any function using a format string. Printing: printf, fprintf, sprintf, vprintf, vfprintf, vsprintf, Logging: syslog, err, warn Dan Boneh

  30. Exploit Dumping arbitrary memory: Walk up stack until desired pointer is found. printf( %08x.%08x.%08x.%08x|%s| ) Writing to memory: printf( hello %n , &temp) -- writes 6 into temp. printf( %08x.%08x.%08x.%08x.%n ) -- difficult to exploit Dan Boneh

  31. Use after free exploits Dan Boneh

  32. High impact security vulns. in Chrome 2015 2020 (C++) 70% due to memory management bugs Dan Boneh

  33. IE11 Example: CVE-2014-0282 (simplified) (IE11 written in C++) <form id="form"> <textarea id="c1" name="a1" ></textarea> <input id="c2" type="text" name="a2 value="val"> </form> Loop on form elements: c1.DoReset() c2.DoReset() <script> function changer() { document.getElementById("form").innerHTML = ""; CollectGarbage(); // erase c1 and c2 fields } document.getElementById("c1").onpropertychange = changer; document.getElementById("form").reset(); </script> Dan Boneh

  34. What just happened? c1.doReset() causes changer() to be called and free object c2 object c2 doSomething doReset doSomethingElse FP1 FP2 FP3 vptr data vtable Dan Boneh

  35. What just happened? c1.doReset() causes changer() to be called and free object c2 object c2 FP1 FP2 FP3 ShellCode vptr data vtable Use after free ! Suppose attacker allocates a string of same size as vtable When c2.DoReset() is called, attacker gets shell Dan Boneh

  36. The exploit <script> function changer() { document.getElementById( form").innerHTML = ""; CollectGarbage(); --- allocate string object to occupy vtable location --- } document.getElementById("c1").onpropertychange = changer; document.getElementById("form").reset(); </script> Lesson: use after free can be a serious security vulnerability !! Dan Boneh

  37. Next lecture DEFENSES Dan Boneh

  38. THE END Dan Boneh

  39. References on heap spraying [1] Heap Feng Shui in Javascript, by A. Sotirov, Blackhat Europe 2007 [2] Engineering Heap Overflow Exploits with JavaScript M. Daniel, J. Honoroff, and C. Miller, WooT 2008 [3] Interpreter Exploitation: Pointer inference and JiT spraying, by Dion Blazakis Dan Boneh

More Related Content

giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#