Understanding Plasma Physics: Single Particle Motion in Magnetic Fields
Delve into the intricate dynamics of single particle motion in plasma physics, focusing on the crucial role of magnetic fields for plasma confinement in fusion environments. Explore concepts such as magnetic mirrors, E.B. drift, and Tokamaks, essential for comprehending the behavior of ions and elec
2 views • 34 slides
Understanding Plasma Proteins and Their Functions
Plasma proteins play a crucial role in various physiological functions such as controlling extracellular fluid distribution and transportation of hormones, vitamins, and other substances. The balance between protein synthesis and catabolism determines protein levels in the vascular compartment, affe
6 views • 23 slides
Thermodynamics of Solar Plasma: SAHA-S Equation of State and Recent Results
SAHA-S equation of state (EOS) presents the current state and recent results in thermodynamics of solar plasma. Key authors V.K. Gryaznov, A.N. Starostin, and others have contributed to this field over 20 years. The equilibrium composition between 145 species, including elements and all ions, is exp
1 views • 23 slides
Exploring Quantum Chromodynamics and Effective Potential in Vacuum Physics
Delve into the intricacies of Quantum Chromodynamics and the concept of effective potential in the context of vacuum physics. Discover how quarks, leptons, photons, W and Z bosons, gluons, and the Higgs boson play crucial roles in shaping the fundamental structures of the quantum vacuum. Explore the
1 views • 11 slides
Understanding Plasma Proteins in Biochemistry Lectures
This informative content discusses the types, functions, and measurement of plasma proteins in biochemistry. It covers the importance of identifying various plasma proteins, their roles in disease diagnosis, and the interpretation of electrophoretic patterns. The lecture overview provides insights i
0 views • 30 slides
Understanding Bacterial Cell Structure and Function
Bacteria display unique cellular structures and functions that differ from eukaryotic cells. They have a simple structure with a plasma membrane but lack complex internal membrane systems. The cytoplasm contains inclusion bodies, ribosomes, and genetic material in the nucleoid. Bacteria can be categ
4 views • 21 slides
Insights on the Hidden Color Component in Nuclear Physics
Introduction to the hidden color component in nuclear physics, discussing its definition, physical effects, and multiquark states like tetraquarks, pentaquarks, and dibaryons. Various models and ongoing debates on the role of hidden colors in multi-quark systems are explored. The concept of colorles
1 views • 42 slides
Insights into Quarkonium Production in Nuclear Collisions by Dhruv Dixit
Quarkonium mesons, such as Charmonium and Bottomonium, provide crucial information in understanding the effects of nuclear matter on their production in proton-nucleus collisions. These mesons, composed of quark-antiquark pairs, exhibit different behaviors in hot mediums, making them valuable probes
0 views • 11 slides
Mechanism of Low-Energy Nuclear Reactions in Low-Temperature Plasma
This work discusses nuclear-chemical processes underlying low-energy nuclear reactions in low-temperature plasma environments, focusing on the initiation of artificial radioactivity in metal cathodes under protium- and deuterium-containing nonequilibrium plasma conditions. The role of electrons with
4 views • 6 slides
Understanding Quark Sivers Function and Spin-Dependent Odderon
Quark Sivers function, a key aspect in quantum chromodynamics, plays a role in capturing orbital angular momentum and spin-orbit coupling. Spin-dependent Odderon, an elusive three-gluon exchange, contributes to cross sections in high-energy collisions. Small-$? TMDs from polarized Wilson lines provi
0 views • 17 slides
Understanding Flowing Gluon Fields and Color Glass Phenomena in QCD
Explore the collective phenomena of gluon fields in classical QCD, focusing on the Standard Model of URHICs, Color Glass, and Gluon Fields in the Forward Lightcone. The research delves into topics like local thermal equilibrium, viscous hydrodynamics, and the interaction of probes with quarks and gl
0 views • 24 slides
Development of Plasma-Facing Geometry Design for W-Divertor in SOLTKT Fusion Reactor
Study on the plasma-facing geometry design based on power shell geometry in the SOL TKT W-divertor development for the fusion reactor. The research involves fundamental differences in divertor baffle design, materials used, heat load requirements, interface connections, and key design concerns. The
0 views • 14 slides
Exploration of Thermodynamics in SU(3) Gauge Theory Using Gradient Flow
Investigate the thermodynamics of SU(3) gauge theory through gradient flow, discussing energy-momentum stress pressure, Noether current, and the restoration of translational symmetry. The study delves into lattice regularization, equivalence in continuum theory, and measurements of bulk thermodynami
0 views • 40 slides
Practical Machine Learning Techniques for Fusion Plasma Control
This presentation discusses the use of machine learning for controlling fusion plasma states, covering topics such as control-oriented modeling, neural networks for plasma dynamics, linearization techniques, and applying linear control laws in latent states for efficient control. The focus is on lev
0 views • 15 slides
Utilizing a Global Model for Analyzing Reaction Pathways in Plasma Systems
This research focuses on using a kinetic global model framework to identify relevant reactions in chemically complex plasma systems. The framework, KGMf, enables the investigation of macroscopic plasma characteristics by analyzing reaction pathways, sensitivity to reaction rate errors, and dominant
1 views • 6 slides
Advances in Fusion Reactor Plasma Control at University of Tokyo
Explore the cutting-edge research on control systems for fusion reactor plasma at the Frontier Science department, University of Tokyo. The study focuses on developing construction and logic control parameters for high-performance plasma, showcasing categorizations of control parameters and actuator
0 views • 25 slides
Advanced Plasma Control Systems in Fusion Experiments
The construction of control systems for high-performance plasma with limited actuators or diagnostics is crucial for ongoing fusion experiments like ITER and DEMO. This involves developing control logic, categorizing various parameters, and understanding actuator systems. Multiple control experiment
2 views • 25 slides
Exploring Stop Quark Decays in High-Energy Physics Experiment
In this study, we delve into the analysis of Stop quark decays in the final state with 2 leptons, focusing on the soft single lepton and dilepton channels. The CMS experiment at 8 TeV energy level explores 4-body decays with varied mass ranges and selection criteria, aiming at better exclusion limit
0 views • 16 slides
Advancing Plasma Medicine: Research Contributions and Networking Opportunities
Explore the latest in plasma medicine research at the II Annual Meeting. Share your results, network with peers, and contribute to the field through collaborative discussions. Answer key questions, meet deliverables, and pave the way for advancements in plasma therapies and biomedical applications.
0 views • 9 slides
Investigating Quark and Cottage Cheese Production Process Experimentally
Explore the experimental process of producing quark, cottage cheese, and similar white acid-set cheeses from milk. Addressing the curdling of milk, product analysis, theoretical comparisons, strengths, weaknesses, and key discussion points in cheese production.
0 views • 7 slides
Advancements in Plasma Cancer Treatment: Research Focus and Collaboration Efforts
Explore the cutting-edge research on plasma-based cancer treatment led by Bekeschus and Boeckmann at the Research Lab Institute. The team specializes in addressing cancer in various tissues such as skin, bone, cartilaginous, and nervous systems. Discover their innovative approaches, infrastructure,
0 views • 4 slides
Exploration of Critical Points in Quark Matter by Jasmine Brewer
Explore the theoretical perspectives on strangeness in quark matter as discussed by Jasmine Brewer from Oxford. The presentation delves into the search for the QCD critical point, dynamics of heavy flavor hadronization, and more, highlighting challenges and future opportunities in the field.
0 views • 21 slides
Understanding Plasma - The Fourth State of Matter
Plasma, the fourth state of matter, is a unique form where electrons freely move among atomic nuclei. It is created when atoms are ionized and can conduct electricity. This article delves into how plasma is produced, its applications like plasma display panels, and the construction of a plasma displ
0 views • 37 slides
Insights into Top Quark EW Coupling Precision Measurement
Exciting images and information about top quark EW coupling precision measurement by Mustapha BIYABI on March 11, 2024. Explore 2D plots of top and topbar mass, boosted decision trees for analyzing signal efficiency, kinematic fitting results, lepton energy outcomes, Z boson mass measurement variati
1 views • 7 slides
Exploring Quark-Gluon Plasma and New State of Matter at High Energy Colliders
Delve into the realm of high-energy physics at nucleus-nucleus colliders, with a focus on the discovery of deconfined partonic matter and the investigation of parallel worlds. Explore the recent insights, emerging topics, and new phenomena observed in ultra-intense collisions. Uncover the properties
0 views • 35 slides
Mesons in Medium and QCD Sum Rule with Dim-6 Operators
Study of mesons in medium and their behavior using QCD sum rule with dim-6 operators, exploring mass shifts, broadening, and indicators of quark-gluon plasma. Specifically focuses on charmonium sequential dissociation and non-perturbative methods in QCD such as lattice QCD and Dyson-Schwinger equati
0 views • 27 slides
Investigation of Short-Range Correlations in Heavy Ion Collisions
Short-range correlations in nuclei play a crucial role in understanding the properties of nuclear wave functions and the transition from baryonic to quark-gluon degrees of freedom. Early theoretical work emphasized the importance of short-range correlations, particularly in modeling the nucleon spec
0 views • 17 slides
Advancements in Plasma Medicine: Research Contributions and Collaboration Opportunities
Explore how research in plasma medicine contributes to the field, focusing on bioactive components, molecular interactions, standard protocols, and potential biomedical applications. Emphasize the importance of sharing results, fostering collaborations, and addressing critical points for further inv
0 views • 9 slides
Heavy Ion Physics at RHIC: RUN14-16 Overview
Exploring heavy ion physics at RHIC through the RUN14-16 campaigns, focusing on measuring heavy quarks like charm and bottom, the experimental setups, beam energies, and the significance of probing Quark Gluon Plasma using heavy quarks. Detailed information about the runs, detectors used, and the ma
0 views • 19 slides
Evolution of Collisionless Plasma Bounded by Absorbing Walls
Study on the evolution of collisionless plasma between absorbing walls, analyzing rarefaction waves, density profiles, and plasma potential decay. Kinetic simulations reveal gas dynamics-like behavior with flat density profiles and linear velocity profiles leading to asymptotic decay. The influence
0 views • 15 slides
Advancements in Plasma Instruments for Space Weather Monitoring
Explore the latest developments in plasma instruments for space weather monitoring, including the PLA Plasma Instrument and MSSL Heritage in Plasma Instruments. These instruments enable precise measurement of plasma parameters in deep space, supporting missions to study solar wind, ion densities, an
0 views • 22 slides
Neutrino Transport in Holography Research Study
This research study delves into the realm of neutrino transport in holography, focusing on the interaction of neutrinos with dense QCD matter in the core. Motivations, formalisms, holographic set-up, and the holographic correspondence are explored using a toy model of quark matter in 4SYM and utiliz
0 views • 32 slides
Utilizing Disruption Avoidance Techniques in Plasma Control for Enhanced Stability
Exploring disruption avoidance techniques in plasma control is crucial for maintaining stability and safety in operating scenarios. Gianluca Pucella discusses topics such as plasma disruptions, prevention methods, emergency shutdown protocols, and disruption prediction models involving machine learn
0 views • 7 slides
Advanced Plasma Cutting Machines at Arcraft Plasma
Arcraft Plasma offers high-quality plasma cutting machines capable of cutting ferrous and non-ferrous materials up to 150mm thickness. These machines come in 12 models with beveling and hole piercing options. The plasma cutting process involves the use of air or inert gas to create plasma that melts
0 views • 12 slides
Theoretical Data Base for Rare Nuclear Reactions Using Quark-Level Model
The creation of a theoretical data base for rare nuclear reactions using the CHIPS quark-level model is discussed in this research by Mikhail Kosov and Aleksey Grachkov from Dukhov Automatics Research Institute VNIIA. The study aims to predict cross-sections of unmeasured reactions, assess neutron-n
0 views • 18 slides
Quarkonia Suppression in High Energy Heavy Ion Collisions by Roland Katz
Investigating the phenomenon of Quarkonia suppression in high energy heavy ion collisions, Roland Katz explores the properties of Quark Gluon Plasma and the behavior of quarks and gluons under extreme conditions. The study delves into the dynamics using the Schrödinger-Langevin equation, highlighti
0 views • 23 slides
Latest Updates on Top Quark Physics at ATLAS
Re(comissioning of LHC and ATLAS has begun with the recording of the first beam splash events. Exciting developments in top quark physics include measurements of top pair production, decays, and inclusive cross sections at different energies. The studies aim to test the Standard Model, observe new p
0 views • 37 slides
Studies on Single Top Quark t-Channel Measurement with ATLAS Experiment
The research focuses on single top quark production to test the V-A structure of the Wtb coupling and measure |Vtb|^2. It is sensitive to new physics beyond the standard model and serves as a background for physics searches. The t-channel production is highlighted as the most promising channel for d
0 views • 11 slides
Understanding Collisional-Radiative Models for Plasma Detachment Control in Tokamaks
Explore the application of Collisional-Radiative Models (CRM) in EIRENE simulations for plasma detachment control in tokamaks. Learn about detached plasma divertor, main reactions in transport, vibrational states in molecular species, and more through a detailed study of particle species, reaction t
0 views • 10 slides
Dynamical Approaches to Quarkonia Suppression
This research explores dynamical approaches to understand quarkonia suppression, particularly in the context of Quantum Chromodynamics. By examining quantum thermalisation, stochastic semi-classical methods, and Schrdinger-Langevin approaches, the aim is to go beyond traditional models and offer a m
0 views • 28 slides