Quantum gravity - PowerPoint PPT Presentation


Neural quantum state tomography, improvements and applications

Advancements and potential applications of neural quantum state tomography, aiming to reduce the exponential classical memory required for expressing quantum states. It discusses the benefits of using machine learning techniques to process and analyze quantum data, such as cleaning up states, manipu

4 views • 26 slides


Gravity in Space

Discuss the force of gravity, its impact on Earth and space, and how aerospace engineers utilize it. Learn why gravity is crucial in aerospace exploration and its effects on objects in space. Discover how gravity varies in different environments and its significance in space exploration.

1 views • 13 slides



Cryptography,.Quantum-safe Cryptography& Quantum Cryptography

Dive into the world of cryptography, quantum-safe cryptography, and quantum technology as discussed in Maurizio D. Cina's presentation at CYBERDAYS in Prato. Topics include current cryptosystems, post-quantum cryptography, quantum key distribution, and future cryptosystems based on quantum algorithm

3 views • 17 slides


CERN Quantum Technologies Initiative Overview

The CERN Quantum Technologies Initiative (QTI) aims to explore the impact of quantum technology on CERN's physics programs. This phase involves identifying key areas for collaboration, conducting scientific investigations, and building quantum capacity. The strategy and roadmap were developed with i

6 views • 14 slides


Exploring Quantum Black Holes: Dual Dynamics and Brane Evaporation

Exploring the dual dynamics of quantum black holes reveals new perspectives on black hole evaporation. By placing black holes on branes, we can study their classical picture in higher dimensions. This approach provides insights that were previously unattainable, leading to a better understanding of

1 views • 28 slides


Addressing The Quantum Threat: The Quantum Resistant Ledger

The Quantum Resistant Ledger (QRL) is a visionary blockchain and digital asset security solution designed to counter the emerging threat of quantum computing. With quantum technology advancing and traditional blockchains at risk, QRL offers an industrial-grade, quantum computer-resistant cryptocurre

2 views • 9 slides


Formal Verification of Quantum Cryptography by Dominique Unruh

Explore the significance of formal verification in quantum cryptography as discussed by Dominique Unruh from the University of Tartu. Understand the challenges, motivations, and current work in verifying quantum crypto protocols, and the potential impact of quantum computers on common encryption met

0 views • 25 slides


Introduction to Quantum Computing: Exploring the Future of Information Processing

Quantum computing revolutionizes information processing by leveraging quantum mechanics principles, enabling faster algorithms and secure code systems. Advancements in quantum information theory promise efficient distributed systems and combinatorial problem-solving. Discover the evolution of quantu

0 views • 68 slides


Near-Optimal Quantum Algorithms for String Problems - Summary and Insights

Near-Optimal Quantum Algorithms for String Problems by Ce Jin and Shyan Akmal presents groundbreaking research on string problem solutions using quantum algorithms. The study delves into various key topics such as Combinatorial Pattern Matching, Basic String Problems, Quantum Black-box Model, and mo

0 views • 25 slides


Understanding Density and Specific Gravity in Pharmacy Practice

Density and specific gravity are important concepts in pharmacy practice for measuring mass and volume relationships of substances. Density is the mass per unit volume of a substance, usually expressed in grams per cubic centimeter, while specific gravity is the ratio of the weight of a substance to

0 views • 21 slides


Exploring Quantum Mechanics: Illusion or Reality?

Delve into the fascinating realm of quantum mechanics with Prof. D. M. Parshuramkar as he discusses the contrast between classical and quantum mechanics. Discover how classical mechanics fails to predict the behavior of electrons in atoms and molecules, leading to the development of quantum mechanic

0 views • 70 slides


Exploring Quantum Field Theory for Gravity and Dark Energy

Delve into the fascinating realms of quantum field theory as applied to gravity and dark energy, unraveling the mysteries of the universe through concepts like vacuum energy, cosmological constants, and dark energy models. Discover the interconnected web of theories concerning the early universe, in

0 views • 27 slides


Understanding Quantum Chemistry and Electron Orbitals

Quantum chemistry plays a key role in determining chemical bonds, phase stabilities, and mineral physics through the study of electron orbitals, quantum numbers, and energy levels. This involves concepts such as the Schrödinger equation, quantum quantities, and the uncertainty principle. The arrang

0 views • 31 slides


Exploring Neural Quantum States and Symmetries in Quantum Mechanics

This article delves into the intricacies of anti-symmetrized neural quantum states and the application of neural networks in solving for the ground-state wave function of atomic nuclei. It discusses the setup using the Rayleigh-Ritz variational principle, neural quantum states (NQSs), variational pa

0 views • 15 slides


Understanding Quantum Wires and Nanowires: Properties and Applications

Quantum wires, quantum dots, and nanowires are essential components in nanotechnology due to their unique properties and applications. Quantum wires are one-dimensional systems with restricted electron movement, while quantum dots are zero-dimensional, limiting electron movement in all dimensions. N

3 views • 12 slides


Understanding Gravity and Its Role in the Solar System

Explore the relationship of the Moon to Earth and the concept of gravity in the context of natural sciences for Grade 7 students. Learn about the center of gravity, the force of gravity, and the role gravity plays in the movement of celestial bodies within the solar system.

0 views • 6 slides


Exploring 3D Transmon Qubits in Quantum Computing

This document delves into the initialization, read-out, and measurement techniques of 3D transmon qubits as integral components of quantum computing. It covers the underlying principles of superconducting qubits, SRF cavity utilization, and the roadmap for improving quantum memory and coherence time

0 views • 12 slides


Understanding Gravity and Forces in Physics

Gravity is a natural force that pulls objects towards the Earth's center, affecting how they fall based on mass. This presentation explores what gravity is, the impact of forces on objects, and how mass influences the effect of gravity. It demonstrates how objects like a bouncy ball and a marble fal

0 views • 8 slides


Understanding Gravity and Center of Gravity in Physics

Gravity is the force of attraction between masses, such as Earth and objects. It gives weight to objects and has a magnitude of 32ft/s2 on Earth. The Center of Gravity (COG) is a hypothetical point where all mass appears concentrated. It plays a crucial role in determining how objects balance and mo

0 views • 13 slides


Gravity Experiment Using Air Pressure to Defy Gravity

Explore a fascinating gravity experiment utilizing the effects of air pressure to challenge gravity. Follow simple steps with visual aids to witness how a piece of card sticks to a glass filled with water when inverted. Understand the science behind this intriguing phenomenon and engage in hands-on

1 views • 5 slides


Exploring Gravity Waves and Aperiodic Modes in Kinematically Complex Flows

Delve into the dynamics of gravity waves and aperiodic modes in kinematically complex flows in this detailed study by Elene Chkhartishvili from Free University of Tbilisi. The research covers topics like internal gravity waves, main formalism, linearization of the velocity field, main equations, and

0 views • 16 slides


Characterizing the Atmospheres of Low Surface Gravity M-dwarfs

This study focuses on characterizing the atmospheres of low surface gravity M-dwarfs, which are promising hosts for exoplanets. The research delves into why low gravity M-dwarfs appear brighter in the infrared than typical M-dwarfs, presenting an improved base model with added opacities. The finding

0 views • 8 slides


Understanding Gravity and Magnetic Models in Geophysics

Construction of gravity and magnetic models involves principles of superposition to isolate anomalies, reference ellipsoids, geoid, and various corrections like drift, latitude, free air, Bouguer, and terrain corrections. Gravity anomalies are determined by subtracting multiple factors from observed

0 views • 15 slides


QBism and Convivial Solipsism in Quantum Interpretations

QBism and Convivial Solipsism present different interpretations of quantum mechanics, focusing on the subjective nature of probabilities and experiences within the quantum formalism. QBism emphasizes the subjective interpretation of probability, considering the quantum state as a tool for assigning

0 views • 30 slides


Development of Quantum Statistics in Quantum Mechanics

The development of quantum statistics plays a crucial role in understanding systems with a large number of identical particles. Symmetric and anti-symmetric wave functions are key concepts in quantum statistics, leading to the formulation of Bose-Einstein Statistics for bosons and Fermi-Dirac Statis

1 views • 15 slides


Post-Quantum Cryptography in IEEE 802.11 - Current State and Future Concerns

Submission discusses the potential impact of post-quantum algorithms on IEEE 802.11 networks, highlighting the necessity to prepare for a post-quantum future. It explores the risks posed by quantum computing to existing cryptographic systems and emphasizes the importance of adopting post-quantum sol

0 views • 19 slides


Quantum Key Agreements and Random Oracles

This academic paper explores the impossibility of achieving key agreements using quantum random oracles, discussing the challenges and limitations in quantum communication, cryptographic protocols, quantum computation, and classical communication. The study delves into the implications of quantum ra

0 views • 29 slides


Understanding Blockchain Vulnerabilities to Quantum Attacks

Explore the vulnerabilities of blockchains to quantum attacks and the potential impact of quantum devices on blockchain technologies. Learn about key concepts such as blockchain basics, proof-of-work, quantum computing, quantum computing algorithms, and vulnerabilities like ECDSA and peer-to-peer ne

0 views • 23 slides


Quantum Computing: Achievable Reality or Unrealistic Dream Workshop

Explore the intriguing realm of quantum computing through insightful lectures by Prof. Gil Kalai and Prof. Nadav Katz at the American Physical Society workshop. Delve into the possibilities, failures, and advancements in quantum information science. Join the discussion on the state-of-the-art develo

0 views • 13 slides


Insights on Quantum Computing: Bridging Theory and Reality

Delve into the world of quantum computing through a series of workshops and personal reflections. Explore the intersection of theoretical concepts with practical applications, highlighting the evolving landscape of quantum mechanics. The journey navigates discussions on electron spin, fundamental th

0 views • 12 slides


Quantum Brownian Regime in Quarkonium Dynamics: Insights and Applications

Exploring quarkonium dynamics in the quantum Brownian regime using non-abelian quantum master equations reveals crucial aspects such as regeneration processes, quarkonia at finite temperature, and distinct regimes based on spectral density and dissociation mechanisms. The study delves into quantum m

0 views • 44 slides


Exploring Quantum Information through Polarization of Photons

Quantum information and photon polarization are explored in this detailed presentation featuring the ultimate quantum 2-state system. The content delves into the behavior of single photons at a quantum level, showcasing the intriguing properties and implications of quantum superposition in polarizat

1 views • 14 slides


Investigating Quantum Collapse and Spontaneous Radiation at Low Energy Scales

Delve into the realm where Quantum Gravity meets Quantum Collapse, exploring the Cosmic Silence Cancellation Effects and the Spontaneous Collapse Rate at Low Energy Limits. Models like Continuous Spontaneous Localization and Dio.si-Penrose propose solutions to the macroscopic observation challenge i

0 views • 20 slides


Understanding Gravity and its Applications

Explore the fascinating world of gravity through topics like the law of gravity, gravitational force, superposition, and more. Dive into concepts such as net gravitational force, acceleration due to gravity, and gravitational forces in various scenarios. Understand how gravity influences objects in

0 views • 68 slides


Understanding Quantum Computing and Its Impact on Cryptography

Quantum computing utilizes the principles of quantum mechanics to process information exponentially faster than classical computers. This advancement poses a significant threat to current cryptographic systems, especially those reliant on factors like RSA and Diffie-Hellman key exchange. If large-sc

0 views • 25 slides


Understanding Quantum Computing: Quantum Gates, Bits, and Applications

Explore the world of quantum computing with this detailed guide covering quantum bits, gates, their applications, and the advancements made in the field. From classical bits to qubits, Bell states, and quantum gates, discover the fundamental principles that drive quantum computing forward.

0 views • 37 slides


Understanding Deutsch's Algorithm in Quantum Computing

Deutsch's Algorithm is a fundamental quantum algorithm designed to solve the problem of determining if a given function is constant or balanced. This algorithm leverages quantum principles such as superposition and entanglement to provide a more efficient solution compared to classical methods. By e

0 views • 17 slides


Quantum Mechanics and Geometric Interpretations in Weyl Space

The discussion explores Weyl quantum mechanics, Bohm's interpretation of quantum potential, and geometric formulations in Euclidean-Weyl space. It delves into the implications of nonlocal quantum potentials and the nature of metric spaces in shaping quantum phenomena. Concluding with alternative vie

0 views • 30 slides


Overview of QuMA: A Microarchitecture for a Superconducting Quantum Processor

This paper introduces QuMA, a quantum microarchitecture that bridges the gap between high-level algorithms and the quantum physical layer. It defines a multi-layered system stack for quantum computers, focusing on compiler support, quantum error correction, and the need for a micro-architecture fram

0 views • 21 slides


Unveiling the Quantum World: Understanding Blackbody Radiation and Quantum Mechanics

Quantum Mechanics emerged between 1900 and 1930 as a revolutionary theory explaining the behavior of microscopic particles. This article delves into the need for Quantum Physics due to classical mechanics' limitations, focusing on Blackbody Radiation and laws governing it like Wiens Displacement Law

0 views • 30 slides