Data networks - PowerPoint PPT Presentation


Computational Physics (Lecture 18)

Neural networks explained with the example of feedforward vs. recurrent networks. Feedforward networks propagate data, while recurrent models allow loops for cascade effects. Recurrent networks are less influential but closer to the brain's function. Introduction to handwritten digit classification

0 views • 55 slides


Evolution and Potential of 5G Technology

Explore the evolving landscape of 5G technology, from enhanced mobile broadband to groundbreaking use cases and standalone networks. Learn how supportive regulations and spectrum allocation are vital for unlocking 5G's full potential. Discover the transformative impact of Standalone 5G networks on i

8 views • 10 slides



Understanding Computer Networks: Types and Characteristics

In the realm of computer networks, nodes share resources through digital telecommunications networks. These networks enable lightning-fast data exchange and boast attributes like speed, accuracy, diligence, versatility, and vast storage capabilities. Additionally, various types of networks exist tod

9 views • 12 slides


Understanding Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM)

Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) are powerful tools for sequential data learning, mimicking the persistent nature of human thoughts. These neural networks can be applied to various real-life applications such as time-series data prediction, text sequence processing,

15 views • 34 slides


Graph Neural Networks

Graph Neural Networks (GNNs) are a versatile form of neural networks that encompass various network architectures like NNs, CNNs, and RNNs, as well as unsupervised learning models such as RBM and DBNs. They find applications in diverse fields such as object detection, machine translation, and drug d

2 views • 48 slides


Exploring Graph-Based Data Science: Opportunities, Challenges, and Techniques

Graph-based data science offers a powerful approach to analyzing data by leveraging graph structures. This involves using graph representation, analysis algorithms, ML/AI techniques, kernels, embeddings, and neural networks. Real-world examples show the utility of data graphs in various domains like

3 views • 37 slides


Understanding Artificial Neural Networks From Scratch

Learn how to build artificial neural networks from scratch, focusing on multi-level feedforward networks like multi-level perceptrons. Discover how neural networks function, including training large networks in parallel and distributed systems, and grasp concepts such as learning non-linear function

1 views • 33 slides


Understanding Back-Propagation Algorithm in Neural Networks

Artificial Neural Networks aim to mimic brain processing. Back-propagation is a key method to train these networks, optimizing weights to minimize loss. Multi-layer networks enable learning complex patterns by creating internal representations. Historical background traces the development from early

1 views • 24 slides


Exploring Samsung SmartThings Hub and Zigbee/Zwave Networks

The Samsung SmartThings hub is a versatile device connecting Zigbee and Zwave networks, offering secure access to SkySpark via HTTPS. Zigbee and Zwave networks operate on distinct frequencies, enabling efficient communication without interference with WiFi. These networks support various devices for

0 views • 19 slides


Understanding Wireless Wide Area Networks (WWAN) and Cellular Network Principles

Wireless Wide Area Networks (WWAN) utilize cellular network technology like GSM to facilitate seamless communication for mobile users by creating cells in a geographic service area. Cellular networks are structured with backbone networks, base stations, and mobile stations, allowing for growth and c

2 views • 17 slides


Understanding Interconnection Networks in Multiprocessor Systems

Interconnection networks are essential in multiprocessor systems, linking processing elements, memory modules, and I/O units. They enable data exchange between processors and memory units, determining system performance. Fully connected interconnection networks offer high reliability but require ext

1 views • 19 slides


Understanding Computer Networks in BCA VI Semester

Computer networks are vital for sharing resources, exchanging files, and enabling electronic communications. This content explores the basics of computer networks, the components involved, advantages like file sharing and resource sharing, and different network computing models such as centralized a

1 views • 96 slides


Understanding Computer Communication Networks at Anjuman College

This course focuses on computer communication networks at Anjuman College of Engineering and Technology in Tirupati, covering topics such as basic concepts, network layers, IP addressing, hardware aspects, LAN standards, security, and administration. Students will learn about theoretical and practic

0 views • 72 slides


Introduction to Neural Networks in IBM SPSS Modeler 14.2

This presentation provides an introduction to neural networks in IBM SPSS Modeler 14.2. It covers the concepts of directed data mining using neural networks, the structure of neural networks, terms associated with neural networks, and the process of inputs and outputs in neural network models. The d

0 views • 18 slides


Enhancing Agriculture Through Global Knowledge Networks and Information Management Systems

Global and regional knowledge networks play a vital role in agriculture by facilitating information sharing, collaboration, capacity building, and coordination among stakeholders. These networks improve access to information, foster collaboration, enhance capacity building, and strengthen coordinati

0 views • 5 slides


Fundamentals of Communications and Networks in the Networks and Communication Department Tutorial

Exploring various encoding schemes and signal codes, such as Unipolar, NRZ-L, NRZ-I, Manchester, and Differential Manchester, along with practical exercises like extracting clock information and data sequences from Manchester-encoded streams. The tutorial covers topics like delta modulation, encodin

0 views • 18 slides


Unlocking the Potential of Local Area Data Networks (LADN) in 5G Networks

Explore how Local Area Data Networks (LADN) in 5G enable ultra-low latency, high-speed connectivity for specific service areas. Learn how LADN allows for tailored services in different scenarios like stadiums and enterprise campuses, optimizing user experiences and network efficiency.

0 views • 40 slides


Understanding Router Routing Tables in Computer Networks

Router routing tables are crucial for directing packets to their destination networks. These tables contain information on directly connected and remote networks, as well as default routes. Routers use this information to determine the best path for packet forwarding based on network/next hop associ

0 views • 48 slides


P-Rank: A Comprehensive Structural Similarity Measure over Information Networks

Analyzing the concept of structural similarity within Information Networks (INs), the study introduces P-Rank as a more advanced alternative to SimRank. By addressing the limitations of SimRank and offering a more efficient computational approach, P-Rank aims to provide a comprehensive measure of si

0 views • 17 slides


Enhancing Service Function Chaining in Edge Data Networks

Introduction of new interfaces and capabilities in 3GPP standards such as Rel-13 and TR 23.718 for improved service function chaining support in Edge Data Networks. Requirements for service functions and controllers in edge environments, considerations for cloud-based and edge-located SFs/SFCs, and

0 views • 18 slides


Understanding Advanced Classifiers and Neural Networks

This content explores the concept of advanced classifiers like Neural Networks which compose complex relationships through combining perceptrons. It delves into the workings of the classic perceptron and how modern neural networks use more complex decision functions. The visuals provided offer a cle

0 views • 26 slides


Evolution of Data Center Networks Towards Scalable and Seamless Connectivity

Evolution of Data Center Networks highlights the need for networks in data centers to support diverse applications with high throughput and low latency, utilize multiple paths, and scale efficiently. The evolution from flat and hierarchical addressing to solutions like PARIS addresses issues such as

0 views • 30 slides


Understanding Relational Bayesian Networks in Statistical Inference

Relational Bayesian networks play a crucial role in predicting ground facts and frequencies in complex relational data. Through first-order and ground probabilities, these networks provide insights into individual cases and categories. Learning Bayesian networks for such data involves exploring diff

0 views • 46 slides


Understanding Overlay Networks and Distributed Hash Tables

Overlay networks are logical networks built on top of lower-layer networks, allowing for efficient data lookup and reliable communication. They come in unstructured and structured forms, with examples like Gnutella and BitTorrent. Distributed Hash Tables (DHTs) are used in real-world applications li

0 views • 45 slides


Understanding Networks: An Introduction to the World of Connections

Networks define the structure of interactions between agents, portraying relationships as ties or links. Various examples such as the 9/11 terrorists network, international trade network, biological networks, and historical marriage alliances in Florence illustrate the power dynamics within differen

0 views • 46 slides


Understanding Graph Theory and Networks: Concepts and Applications

Explore the concepts of graph theory and management science, focusing on networks, spanning trees, and their practical applications. Learn about the difference between a snowplow tracing streets, a traveler visiting cities, and connecting towns with cables. Discover how networks like Facebook evolve

0 views • 15 slides


Parallel Prefix Networks in Divide-and-Conquer Algorithms

Explore the construction and comparisons of various parallel prefix networks in divide-and-conquer algorithms, such as Ladner-Fischer, Brent-Kung, and Kogge-Stone. These networks optimize computation efficiency through parallel processing, showcasing different levels of latency, cell complexity, and

1 views • 21 slides


Understanding Wireless Networks: Types and Applications

Wireless networks utilize wireless data connections to connect network nodes and share resources. They include Wireless Personal Area Networks (WPAN), Wireless LAN, Wireless WAN, Wireless Broadband, and Wireless Cellular. Each type has specific characteristics and applications, such as linking perso

0 views • 29 slides


Overlay Networks and Consistent Hashing in Distributed Systems

Understanding the concept of overlay networks and consistent hashing in distributed systems is crucial for scalability and efficient data storage. Overlay networks like P2P DHT via KBR offer a decentralized approach for managing data while consistent hashing provides a balanced and deterministic way

0 views • 36 slides


Diverse Social Entities Mining from Linked Data in Social Networks

This research focuses on mining diverse social entities from linked data in social networks using a DF-tree structure and DF-growth mining algorithm. The study explores the extraction of important linked data in social networks and the mining of various social entities such as friends. Prominence va

0 views • 13 slides


Understanding IP Routing and Switching in Computer Networks

In the world of computer networking, IP routing and switching play crucial roles in ensuring efficient data transmission. Switches make decisions based on MAC addresses, while routers route based on IP information. By managing routing tables and using static or dynamic routing protocols, networks ca

0 views • 13 slides


Understanding Bayesian Networks: A Comprehensive Overview

Bayesian networks, also known as Bayes nets, provide a powerful tool for modeling uncertainty in complex domains by representing conditional independence relationships among variables. This outline covers the semantics, construction, and application of Bayesian networks, illustrating how they offer

0 views • 17 slides


Machine Learning and Artificial Neural Networks for Face Verification: Overview and Applications

In the realm of computer vision, the integration of machine learning and artificial neural networks has enabled significant advancements in face verification tasks. Leveraging the brain's inherent pattern recognition capabilities, AI systems can analyze vast amounts of data to enhance face detection

0 views • 13 slides


Understanding Network Analysis: Whole Networks vs. Ego Networks

Explore the differences between Whole Networks and Ego Networks in social network analysis. Whole Networks provide comprehensive information about all nodes and links, enabling the computation of network-level statistics. On the other hand, Ego Networks focus on a sample of nodes, limiting the abili

0 views • 31 slides


Evolution of Networking: Embracing Software-Defined Networks

Embrace the future of networking by transitioning to Software-Defined Networks (SDN), overcoming drawbacks of current paradigms. Explore SDN's motivation, OpenFlow API, challenges, and use-cases. Compare the complexities of today's distributed, error-prone networks with the simplicity and efficiency

0 views • 36 slides


Understanding Data Communication in Computer Networks

Data communication in computer networks involves the exchange of data between devices through various transmission mediums. The effectiveness of a data communications system relies on key characteristics like delivery, accuracy, timeliness, and jitter. Components of data communication include the me

0 views • 6 slides


Intersectional STEM Network Formation for Underrepresented Students

Addressing the underrepresentation of women and people of color in STEM, this study explores the impact of peer networks on the persistence of underrepresented high school students of color in STEM at the postsecondary level. It delves into how race and gender intersect to influence the creation and

0 views • 16 slides


Forecasting Short-Term Urban Rail Passenger Flows Using Dynamic Bayesian Networks

A study presented a dynamic Bayesian network approach to forecast short-term urban rail passenger flows in the Paris region. The research addresses the challenges of incomplete data, unexpected events, and the need for real-time forecasting in public transport networks. By leveraging Bayesian networ

0 views • 19 slides


New Approaches in Learning Complex-Valued Neural Networks

This study explores innovative methods in training complex-valued neural networks, including a model of complex-valued neurons, network architecture, error analysis, Adam optimizer, gradient calculation, and activation function selection. Simulation results compare real-valued and complex-valued net

0 views • 12 slides


Understanding Bayesian Networks for Efficient Probabilistic Inference

Bayesian networks, also known as graphical models, provide a compact and efficient way to represent complex joint probability distributions involving hidden variables. By depicting conditional independence relationships between random variables in a graph, Bayesian networks facilitate Bayesian infer

0 views • 33 slides