Venn Diagrams in Logic: Examples and Definitions

 
Unit 10 – Logic and
Venn Diagrams
 
Unit 10 – Logic and
Venn Diagrams
 
Venn Diagram: Example
 
Using the numbers 0, 1, 2, … , 9 illustrate
the sets:                  and
 
Solution: Use a Venn diagram
Using the numbers 0, 1, 2, … , 9 illustrate
the sets:                  and
 
A
 
B
 
4 is in BOTH sides
 
4
Using the numbers 0, 1, 2, … , 9 illustrate
the sets:                  and
A
B
 
7 and 9 are only in set A
4
 
7
 
9
Using the numbers 0, 1, 2, … , 9 illustrate
the sets:                  and
A
B
1, 2, 3 and 5 are only in set B
4
7
9
 
1
 
2
 
3
 
5
Using the numbers 0, 1, 2, … , 9 illustrate
the sets:                  and
A
B
0, 6 and 8 are not in A or B
4
7
9
1
2
3
5
 
0
 
6
 
8
 
You have finished viewing the presentation
Venn Diagrams: Example
 
Please choose an option
 
Unit 10 – Logic and
Venn Diagrams
 
Venn Diagram: Key Definitions
 
A
 
B
Intersection:  Members of both set A and set B
 
A
 
B
Union:  Members of set A or set B or both
Complementary: Members not in the set
 
A
 
A’
Universal Set: All members
 
U
 
A
 
B
Subset: All members of set A are in set B
 
 
Number of elements in a set:
 
Empty set:
 
You have finished viewing the presentation
Venn Diagrams: Key Definitions
 
Please choose an option
 
Unit 10 – Logic and
Venn Diagrams
 
Venn Diagrams: Illustrating Sets
 
A
 
B
 
U
 
A
 
B
 
U
 
A
 
B
 
U
 
A
 
B
 
U
 
A
 
B
 
U
 
A
 
B
 
U
 
A
 
B
 
U
 
A
 
B
 
U
 
A
 
B
 
U
 
A
 
B
 
U
 
You have finished viewing the presentation
Venn Diagrams: Illustrating Sets
 
Please choose an option
 
Unit 10 – Logic and
Venn Diagrams
 
Venn Diagrams: Theoretical
Example
A
B
U
What is the shaded region?
A
B
U
What is the shaded region?
A
B
U
What is the shaded region?
A
B
U
What is the shaded region?
C
A
B
U
What is the shaded region?
C
A
B
U
What is the shaded region?
C
 
You have finished viewing the presentation
Venn Diagrams: Theoretical
Example
 
Please choose an option
 
Unit 10 – Logic and
Venn Diagrams
 
Venn Diagram: Practical Example
 
  
U = {Natural Numbers less than 16}
Describe set A and set B
  
A = {Even Numbers}
  
B = {Prime Numbers}
4
10
14
6
12
8
2
13
5
7
3
11
1
15
9
U
 
U
28
20
14
16
26
12
18
24
30
10
25
15
21
27
13
19
11
29
17
 
Describe Sets U, A, B and C
   
 
U = {10,11,12,13,14,........29,30}
 
A = {Even Numbers}
 
B = {Multiples of 3}
 
C = {Multiples of 5}
C
B
A
22
23
 
You have finished viewing the presentation
Venn Diagrams: Practical
Example
 
Please choose an option
Kerjakan dengan mengarsir 2 arah.
Clue:
Untuk U (Gabungan, Union)
Setelah diarsir 2 arah, jawabannya adalah
area yang terkena arsir single maupun arsir
silang.
Untuk n (Irisan, Intersection, Overlap)
Setelah diarsir 2 arah, jawabannya adalah
area yang terkena arsir silang.
 
37
X   3    =  111
37  X   6    =  222
?    X  ?    =   333
?    X  ?    =   444
?    X  ?    =   555
?    X  ?    =   666
?    X  ?    =   777
?    X  ?    =   888
?    X  ?    =   999
 
 
 
(1     x 9 )  + 2  = 11
(12   x 9 )  + 3  = 111
(?     x 9)   + ?  = 1111
(?     x 9    + ?  = 11111
 
 
 
 
 
 
Source:
 
M. Burghes, “Logics and Venn Diagrams”, Lecture Material of Discrete
Mathematics, Plymouth: Plymouth University, 2008
 
Applying Venn & Its Logics onto
Programming and Database
 
Venn and Its Logics in Handling Database
 
Venn and Its Logics in Handling Database
 
Seorang staf IT pada sebuah perusahaan pembuat
mobil Gokar memperoleh data sbb:
 
 
Bahwa jumlah Gokar yang dibuat semuanya adalah
30 unit, masing-masing diberi tanda dengan angka 1
s.d. 30.
 
Gokar Kategori A terdiri dari15 unit Gokar
sebagaimana tercantum pada tabel.
 
Gokar Kategori B terdiri dari 15 unit Gokar
sebagaimana tercantum pada tabel.
 
Gokar Kategori C terdiri dari 6 unit Gokar
sebagaimana tercantum pada tabel.
 
Kepala bagian Marketing meminta bantuan staf IT tsb
untuk memilah sedemikian rupa, yaitu akan ada 16
unit Gokar yang dikirim ke Balikpapan besok pagi.
 
 
Seandainya Anda adalah staf IT tersebut, gambarkan
diagram Venn yg menggambarkan problem ini dan
tulislah formula untuk memilah 16 unit Gokar yg akan
dikirim ke Balikpapan!
 
Logics in Handling Number Patterns
 
1 + 3 + 5 + 7 + 9 = 5^2
 
Nilai Mhs
 
A
 
B
 
U
 
A
 
B
 
U
Slide Note
Embed
Share

Explore Venn diagrams in logic through examples illustrating sets, key definitions, theoretical and practical examples. Understand concepts such as intersection and union of sets using numbers 0 to 9.

  • Venn diagrams
  • Logic
  • Sets
  • Definitions
  • Examples

Uploaded on Oct 09, 2024 | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.

E N D

Presentation Transcript


  1. Unit 10 Logic and Venn Diagrams Presentation 1 Venn Diagrams: Example Presentation 2 Venn Diagrams: Key Definitions Presentation 3 Venn Diagrams: Illustrating Sets Presentation 4 Venn Diagrams: Theoretical Example Presentation 5 Venn Diagram: Practical Example

  2. Unit 10 Logic and Venn Diagrams Venn Diagram: Example

  3. Using the numbers 0, 1, 2, , 9 illustrate the sets: and Solution: Use a Venn diagram

  4. Using the numbers 0, 1, 2, , 9 illustrate the sets: and 4 A B 4 is in BOTH sides

  5. Using the numbers 0, 1, 2, , 9 illustrate the sets: and 7 4 9 A B 7 and 9 are only in set A

  6. Using the numbers 0, 1, 2, , 9 illustrate the sets: and 1 7 2 4 3 9 5 A B 1, 2, 3 and 5 are only in set B

  7. Using the numbers 0, 1, 2, , 9 illustrate the sets: and 0 1 7 2 6 4 3 9 5 8 A B 0, 6 and 8 are not in A or B

  8. You have finished viewing the presentation Venn Diagrams: Example Please choose an option Return to the Start Presentation 2 Venn Diagrams: Key Definitions Presentation 3 Venn Diagrams: Illustrating Sets Presentation 4 Venn Diagrams: Theoretical Example Presentation 5 Venn Diagram: Practical Example

  9. Unit 10 Logic and Venn Diagrams Venn Diagram: Key Definitions

  10. Intersection: Members of both set A and set B A B

  11. Union: Members of set A or set B or both A B

  12. Complementary: Members not in the set A A

  13. Universal Set: All members U

  14. Subset: All members of set A are in set B A B

  15. Number of elements in a set: Empty set:

  16. You have finished viewing the presentation Venn Diagrams: Key Definitions Please choose an option Return to the Start Presentation 1 Venn Diagrams: Example Presentation 3 Venn Diagrams: Illustrating Sets Presentation 4 Venn Diagrams: Theoretical Example Presentation 5 Venn Diagram: Practical Example

  17. Unit 10 Logic and Venn Diagrams Venn Diagrams: Illustrating Sets

  18. U A B

  19. U A B

  20. U A B

  21. U A B

  22. U A B

  23. U A B

  24. U A B

  25. U A B

  26. U A B

  27. U A B

  28. You have finished viewing the presentation Venn Diagrams: Illustrating Sets Please choose an option Return to the Start Presentation 1 Venn Diagrams: Example Presentation 2 Venn Diagrams: Key Definitions Presentation 4 Venn Diagrams: Theoretical Example Presentation 5 Venn Diagram: Practical Example

  29. Unit 10 Logic and Venn Diagrams Venn Diagrams: Theoretical Example

  30. What is the shaded region? U A B

  31. What is the shaded region? U A B

  32. What is the shaded region? U A B

  33. What is the shaded region? U B A C B ( A C )

  34. What is the shaded region? U B A C B )' C A (

  35. What is the shaded region? U B A C (A C B' )

  36. You have finished viewing the presentation Venn Diagrams: Theoretical Example Please choose an option Return to the Start Presentation 1 Venn Diagrams: Example Presentation 2 Venn Diagrams: Key Definitions Presentation 3 Venn Diagrams: Illustrating Sets Presentation 5 Venn Diagrams: Practical Example

  37. Unit 10 Logic and Venn Diagrams Venn Diagram: Practical Example

  38. U 9 1 14 3 4 13 15 6 2 5 10 7 12 8 11 A B U = {Natural Numbers less than 16} Describe set A and set B A = {Even Numbers} B = {Prime Numbers}

  39. U A B 14 12 13 21 28 18 26 24 16 27 19 30 22 20 15 23 10 11 29 25 C 17 Describe Sets U, A, B and C U = {10,11,12,13,14,........29,30} A = {Even Numbers} B = {Multiples of 3} C = {Multiples of 5}

  40. You have finished viewing the presentation Venn Diagrams: Practical Example Please choose an option Return to the Start Presentation 1 Venn Diagrams: Example Presentation 2 Venn Diagrams: Key Definitions Presentation 3 Venn Diagrams: Illustrating Sets Presentation 4 Venn Diagrams: Theoretical Example

  41. Kerjakan dengan mengarsir 2 arah. Clue: Untuk U (Gabungan, Union) Setelah diarsir 2 arah, jawabannya adalah area yang terkena arsir single maupun arsir silang. Untuk n (Irisan, Intersection, Overlap) Setelah diarsir 2 arah, jawabannya adalah area yang terkena arsir silang. (A C B' ) B ( A C )

  42. 37 X 3 = 111 37 X 6 = 222 ? X ? = 333 ? X ? = 444 ? X ? = 555 ? X ? = 666 ? X ? = 777 ? X ? = 888 ? X ? = 999 (1 x 9 ) + 2 = 11 (12 x 9 ) + 3 = 111 (? x 9) + ? = 1111 (? x 9 + ? = 11111

  43. Source: M. Burghes, Logics and Venn Diagrams , Lecture Material of Discrete Mathematics, Plymouth: Plymouth University, 2008

  44. Applying Venn & Its Logics onto Programming and Database

  45. Venn and Its Logics in Handling Database A B C Wished Output (D) 1 11 1 1 2 12 2 2 3 13 3 3 4 14 4 4 5 15 5 5 11 16 6 6 12 17 11 13 18 12 14 19 13 15 20 14 21 21 15 22 22 21 23 23 22 24 24 23 25 25 24 25

  46. Venn and Its Logics in Handling Database Seorang staf IT pada sebuah perusahaan pembuat mobil Gokar memperoleh data sbb: A B C Wished Output (F) 1 11 1 1 Bahwa jumlah Gokar yang dibuat semuanya adalah 30 unit, masing-masing diberi tanda dengan angka 1 s.d. 30. 2 12 2 2 3 13 3 3 4 14 4 4 Gokar Kategori A terdiri dari15 unit Gokar sebagaimana tercantum pada tabel. 5 15 5 5 11 16 6 6 Gokar Kategori B terdiri dari 15 unit Gokar sebagaimana tercantum pada tabel. 12 17 11 Gokar Kategori C terdiri dari 6 unit Gokar sebagaimana tercantum pada tabel. 13 18 12 14 19 13 Kepala bagian Marketing meminta bantuan staf IT tsb untuk memilah sedemikian rupa, yaitu akan ada 16 unit Gokar yang dikirim ke Balikpapan besok pagi. 15 20 14 21 21 15 22 22 21 Seandainya Anda adalah staf IT tersebut, gambarkan diagram Venn yg menggambarkan problem ini dan tulislah formula untuk memilah 16 unit Gokar yg akan dikirim ke Balikpapan! 23 23 22 24 24 23 25 25 24 25

  47. Logics in Handling Number Patterns 1 + 3 + 5 + 7 + 9 = 5^2

  48. Nilai Mhs Nama 29/9 Venn 6/10 Venn 13/10 Venn Logics 13/10 Tugas 27/10 Matriks 3/11 Matriks Total Poin Bonus Abraham 1+1 1+1+1 - 60 - - 5 Anatasha 1+1+1 - 1 100 - 1+1 6 Dipo 1 1 - 95 1+1+1 1+1 7 Okto 1+1 1+1 - 90 1+1 1+1 8 Rivaldy 1 1+1 70 1+1 1+1 7 Michelle 1 - 1 95 - - 2 Lanang 1 - - 90 1 - 2 Natalia 1 1 - 90 1+1 - 4 Raka - 1 - 70 1 1+1+1 5 Lingga - - - 70 1 1+1+1 4 Tirta - - - 0 - - 0

  49. U A B

  50. U A B

More Related Content

giItT1WQy@!-/#giItT1WQy@!-/#giItT1WQy@!-/#